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1. Introduction 
Formal techniques have been used effectively for developing software: from modeling 
requirements to specifying and verifying programs. In most cases, the programs have been 
relatively small and complex, many of them for safety critical applications. Use of formal 
techniques has also become relatively standard for the design of complex VLSI circuits, 
whether for processors or special purpose devices. 

Both of these areas are characterized by having a small state space, closely matching the 
capability of the formal techniques that are used. This capability has of course increased 
greatly over the last two decades, just as processing speeds have improved, and the 
problems that are solved today would have been out of reach, or even beyond expectation, 
some years ago. However, from the point of view of software engineering practice, formal 
techniques are still seen as exotic and suitable only for particular problems. Software 
engineers will agree with promoters of formal techniques, but for very different reasons, 
that these techniques are not applicable to today’s software engineering methods. They will 
usually disagree on why this is so, one pointing to the lack of contribution that formal 
techniques make to the practice of these methods and the other questioning the methods 
themselves.  

Successful applications of formal techniques have tended to be in the few areas where their 
use has become part of the practice, for reasons of complexity, cost or regulatory pressure. 
But the mechanisms supporting formal techniques have now reached a level of maturity 
where they can be used for many more purposes than those attempted today. Software 
engineering methods themselves are now better understood and systematized, especially 
when they are measured against the requirements of the so-called maturity models such as 
CMM.  

There is urgent need for formal techniques to be used to support software engineering 
practice on a wide scale. There are improvements that are becoming increasingly essential 
in different areas, such as requirements modeling, software architecture and testing. And 
there are major contributions that formal techniques can make to improving practice.  

This paper proposes that the Grand Challenge of the Verified Compiler should be seen in a 
wide context. The use of the term ‘compiler’ in the challenge may suggest that the activity 
will start with a program, perhaps with some formal annotations. I will argue that the 
specification, program and verification steps that are often the context for using formal 



techniques must be extended to start earlier, with requirements, and end later, with testing. 
In fact, there is good reason to assume that for a great deal of application development, 
verification of a program will be a far less important activity than is perceived today.  

2. Formal ‘Methods’ and ‘Value’ 

The use of formal techniques in large-scale software engineering faces two major 
obstacles: 

a. The techniques have no defined role among the steps of existing software 
engineering methods, and 

b. There is no ‘method’ to the use of a formal technique: while the goal may be 
precise, there is no specified series of steps that can be followed to reach the goal. 

Nevertheless, there are ways in which formal techniques can be used in the software 
engineering process: 

(i) To give greater assurance in the application of steps of the development 
methods, and 

(ii) To augment the steps themselves with formal operations. 

However, for a software engineer, any change in current practice needs to be justified by a 
perceivable (and, ideally, measurable) improvement in terms of reducing the effect of a 
commonly accepted problem. Moreover, the use of a formal technique should be seen to 
require no more effort than is currently required (described by Bob Kurshan (1994) by 
saying ‘for the use of a formal technique to be acceptable, it must be seen by the project 
team as a zero cost option!’).  

A formal technique should therefore: 

a. Provide useful data otherwise that is not available; 

b. Reduce the time or the effort needed for completing a task; 

c. Add measurable quality to the resulting software; 

d. Scale up to meet the project needs; and 

e. Be capable of being used reliably and repeatedly.  

Few formal techniques available today meet all these requirements. The low acceptance of 
formal techniques in the industry points to the difficulty in promoting their use for benefits 
that do not include solving known problems.  



3. Problems 

Rather than starting with a formal technique and looking for its possible uses, it is 
rewarding to first look at where there are known difficulties in the software engineering 
process.  

a. In any large software development project, it will be seen that requirements change 
throughout the development and maintenance lifecycle. Some of these changes may 
due to inadequate planning or lack of common understanding between different 
groups. Others may be forced due to changes in the operating environment, or (most 
commonly) due to new requirements arising. In practice, it is not unusual that 
requirements change; indeed, it would be unusual if they did not. 

b. Each change in requirements will usually result in changes in the program design 
and the program code. Further, changes will be needed to ensure that the testing 
procedures cover the changed requirement.  

c. Few programs work in complete isolation so in general the requirements, design, 
coding and testing must take place in the context of the chosen operating 
environment, which includes software at platform and higher levels. Changes are 
possible here too, as mentioned in (a). 

Tracking changes through the development cycle is a major challenge because it also 
requires ensuring that the effects in different steps in the process are consistent.  

As an example, consider the following data. An analysis of efforts used in a wide cross-
section of projects using Java, Cobol and Oracle/Developer 2000 in a large company 
showed the following averages: 

Requirements analysis  4% 
Design    16% 
Construction   64% 
Testing   12% 

The remaining time was spent on project management and review. Note that a lot of the 
requirements analysis was done with the customer, not in the company office, and is not 
logged as part of the efforts listed here. 

These figures suggest immediately that since a great proportion of the total time was spent 
on construction, that is where improvements would have the most effect. An indication of 
how to make improvements could come from looking at figures for the amount of re-work 
that was being done, since this will give an indication of things being done incorrectly.  

Analysis of the percentage of effort spent on re-work gives an interesting picture: of all the 
defects found before testing, as much as 59% were corrected in the construction phase. In 
other words, there a great deal of effort during construction on correcting errors. These 
errors could have been introduced during coding or in an earlier phase. One could conclude 
that either (a) the programmers were particularly poor at their task, or (b) there is some 
other cause. In discussions with project teams in the company, a different picture emerged. 



Invariably, project teams were able to show that the extent of rework during the 
construction phase was almost entirely due to requirements being corrected, augmented or 
changed right through the development cycle, far less often due to coding errors.  

Studies of program development projects and so-called software ‘maintenance’ projects 
show clearly that requirements will change throughout the lifecycle. When the resulting 
program changes have to be made manually, the cost rises and the possibility of 
introducing new errors increases. In general, requirements written in any notation are 
shorter and more compact than the corresponding program code. If code is generated 
automatically from models created from the requirements, changes in requirements could 
be automatically converted into program changes.  

In the next section, we will look at some results obtained from automatic code generation 
from UML models in large software engineering projects. 

4. Automatic Code Generation 

Manual coding has limitations in the amount of code that can be produced by a person. A 
programmer produces around 15 lines of code per day when averaged over a project; there 
will be outstanding programmers who far exceed this average, and there will be others 
whose average is significantly lower. Taking the average as a representative figure, it is not 
difficult to calculate the time and effort it will take to produce programs of the size 
typically expected in a reasonable-sized project. For example, a final program of one 
million lines will require just under 300 person years of effort, or a team of 100 
programmers working for 3 years.  

These figures are of course merely indicative. However, even if divided by a factor of 2 or 
3, the numbers are still large. Moreover, in practice, project overheads multiply with team 
size and total productivity drops; on the other hand, reducing team size will increase the 
duration of the project. 

Given the speed at which business opportunities change, no customer will be prepared to 
wait for years before a required software solution is delivered. If the team size must be kept 
high, then just to assemble, train and organize the team will itself take considerable time. 

Many application software projects are expected to produce a final program of anything 
between 1M and 5M lines of code and to do so within as short a time as possible. This 
leads to the need for generating as much code as possible, rather than producing it by hand. 

Example 

A large and highly complex financial services software system was produced using a 
software development environment that included automated code generation from UML 
models and compact operational definitions of operations. The figures for different phases 
of the project are shown below: 

 
 



Requirements analysis  36% 
Design, construction 
   and testing   64%  

A team of 20-30 engineers were responsible for defining the requirements over 5 months 
and a team of 60 programmers developed the UML models and operational definitions to 
generate over 6M lines of code in 6 months. Few errors were discovered during testing and 
very little re-work needed to be done. The productivity per programmer was as high as 300 
lines of generated code per day. 

Given the inefficiencies in size of generated code, dividing the final program size by 2 or 3 
would give a figure closer to the size that may be expected from a team of good 
programmers working using the usual methods. However, with manual programming both 
the team size and the project duration would increase very greatly.  

End of Example 

This is not an isolated example. 60-70 systems of large size have been produced using the 
same software development environment and many more are under development. 

There are many important advantages to using automated code generation: 

a. Great reduction in programming effort and development time; 

b. Almost complete absence of testing associated with programming errors; 

c. Uniformity in code structure, making inspection and maintenance easier; 

d. Reduction in time and effort needed to accommodate changes in requirements; 

e. Ability to generate programs for different platforms from the same requirements, 
with no increase in effort. 

This comes with a price: increased program size. However, this is something that matters 
less in these days of falling memory sizes. 

5. Software maintenance 

There is more software under so-called maintenance than is being developed at any point of 
time. Figures vary widely but to say that over 70% of the total software work is for 
maintenance would not be far wrong. 

It is often assumed that software maintenance consists of correcting the bugs left by bad 
programming and inadequate testing. However, industry figures 
(http://fox.wikis.com/wc.dll?Wiki~SoftwareMaintenance~SoftwareEng) tell another story. 

 Remedial effort (correcting errors)  21% 
 Adapting to operating changes  25% 
 Enhancements (adding new features)  50% 
 Improvements (making it more robust)   4% 



These figures are not dissimilar to those collected at a large software company: 

 Remedial effort (correcting errors)  27% 
 Adapting to operating changes         < 0.5% (handled separately) 
 Enhancements (adding new features)  58% 
 Improvements (making it more robust)   4% 

It is clear from both cases that the major part of the effort goes into making changes in the 
software in response to changes in requirements. While the figure of 20-25% shows that 
bug fixing takes about half the time spent on adding new features during maintenance, it is 
still large. 

6. Automated Test Generation 
To be added. 

7. Discussion 
There are a few conclusions that can be drawn from the figures shown in the previous 
sections. 

c. Improving the way requirements are modeled could have a substantial effect on 
software is developed and maintained. 

d. Automated code generation can cut down greatly on program development time. 

e. Improving and automating methods of testing can reduce further reduce the time 
needed for development and maintenance. 

Can a Verifying Compiler remove the need for all but cursory testing? Most large 
applications run in an environment where there are interfaces to many other software 
systems: existing software systems, middleware and communication layers, database 
systems and many others, apart from the operating system. It is hard to see how these 
interfaces can be modeled and checked during even an extended ‘compilation’ time. 
Moreover, the interfaces are subject to change so verification checks would need to be 
repeated for each change. It is already sufficiently onerous to repeat the full cycle of 
regression tests each time that a change is made in the software. If to this is added the cost 
of re-verifying the program for each change, it would add considerably to the overhead of 
using the Verifying Compiler. 

7. Conclusions 

The goal of producing the Verifying Compiler is seen as a task requiring international 
effort between teams contributing in different ways. It is a remarkable challenge and one 
that should help to bring together many different approaches, techniques and skills towards 
a common purpose.  

This purpose must also be seen by practitioners as common to the evolution of software 
engineering techniques. If the already wide gap between the use of formal techniques and 



software engineering practice is allowed to increase, getting the Verifying Compiler used in 
practice will certainly prove to be a much larger challenge.  

There can and should be many smaller steps towards reaching this goal, motivated by the 
need to produce a Verifying Compiler. There are things that can be done today and an 
excellent example is the use of verification techniques for checking properties of device 
drivers for Windows systems, described in papers by Rajamani and Ball and others. There 
are many other examples of the use of formal techniques in software engineering practice 
in large companies, each of which is producing measurable improvements and a level of 
acceptance by software engineers that is very promising. In this paper, we outline a few 
such initiatives (one given above, more to be added) and discuss the directions where new 
work is focused. 
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