
The Importance of Non-theorems and
Counterexamples in Program Verification

Graham Steel

School of Informatics,
University of Edinburgh,

Edinburgh, EH8 9LE, Scotland.
graham.steel@ed.ac.uk

http://homepages.inf.ed.ac.uk/gsteel

Abstract. We argue that the detection and refutation of non-theorems,
and the discovery of appropriate counterexamples, is of vital importance
to the Grand Challenge of a Program Verifier.

1 Introduction

In this essay, we make a case for the inclusion of non-theorem (i.e. incorrect
conjecture) detection and counterexample generation as a core theme in the
research program of the Grand Challenge of a Program Verifier. We will argue
that:

– Research in program verification technology will be hindered if counterex-
ample generation research does not catch up and keep pace. We will give the
reasons for this in §2.

– Detecting false conjectures and generating counterexamples to them is a
fascinating scientific challenge in itself. We will argue this in §3.

– Deduction based approaches for verification, which offer perhaps the best
chance of achieving the goals of the grand challenge, must improve in their
handling of non-theorems if they are to compete with model checking ap-
proaches, which are already able to give counterexamples to false verification
conditions.

Our arguments will be followed in §4 by a look at previous and current
research on the topic, including our own efforts in the Mathematical Reasoning
Group at the University of Edinburgh.

Since the areas of application are the same, and since the problems of program
verification and counterexample generation are in a sense ‘dual’, it seems logical
that they should be thought of as part of the same Grand Challenge. Note that
we fully support the view that the final goal of the project must be a program
verifier, not a system that just finds more and more bugs. However, we will
argue in this paper that to achieve this goal, the dual problem of non-theorem
detection and counterexample generation must be given due attention.



2 The Importance of Counterexample Generation

Even the most diligent and expert programmer will very rarely write a bug-
free first version of a program. The majority of calls to a program verifier will
therefore involve an incorrect program. If we want program verification tools
to become widely used, they must deal with buggy programs in a competent
manner. Simply presenting failed verification conditions or open subgoals is not
sufficient, since it leaves the user with no idea whether a bug has been found,
or whether the verification system is simply unable to dispose of that particular
proof obligation. What is required is a system which can not only detect an
incorrect conjecture, but also supply a counterexample to allow the user to locate
the flaw.

Non-theorem detection is also important to the internal processes of a verifi-
cation tool. Automated proof attempts, particularly when induction is involved,
will frequently require the conjecturing of lemmas and generalisations. Often
these conjectures will be false, and it is vital that we detect these cases and
prune our search space appropriately.

There is a further, pragmatic argument for the inclusion of counterexample
generation within the Grand Challenge. Great scientific problems, from landing a
man on the moon to producing a computer to beat a grand master at chess, have
been solved by making iterative improvements to a prototype and learning from
failures. To apply this methodology to our Grand Challenge, we must encourage
participation from industry, in order to ensure a supply of case study material, to
get feedback on the tools we produce, and where appropriate, to try to influence
software engineering practice. For this, we need to ensure that we are able to
make a financial argument for the use of our tools even when they are at a
prototype stage, and unable to deliver a fully verified end product. Being able
to detect and present counterexamples that allow bugs to be identified is a
way of ensuring some payback to our industrial partners. The current industrial
preference for model checking over theorem proving can partly be explained by
the ability of model checkers to present counterexample traces.

3 The Challenge of Counterexample Generation

The non-theorems that arise in program verification can sometimes be easy
to find. They often occur close to the base case of a recursive data type, and
evaluating the conjecture at some small values can be sufficient to detect the
bug. However, there are a large number of cases where the counterexample is
a far more subtle object, and it is here that the scientific challenge lies. An
example of a success story in this area is the application of formal methods to
discovering attacks on security protocols. Here, the attacks are counterexamples
to conjectures about the security of a system. The counterexamples may be
quite large, for example up to 14 messages in [18], and may require an intruder to
exploit quite subtle flaws in the protocol. Further challenges remain: for example,
taking into account the mathematical properties of the cryptofunctions in use.



Other problems are well outside the scope of current techniques. For example,
the book ‘Numerical recipes in C’ contains Knuth’s code for a (pseudo-)random
number generator, [14, p. 283]. The code is designed to return a floating point
number between 0 and 1. However, if certain very large seed values are used,
the code can return a number outside of this range. With seed value 752 005
7091, 13 out of the first 10,000 calls return a value very significantly outside the
required range. The large seed value may seem ridiculous, but if you were seeding
your generator on the number of seconds since 1 Jan 1970, this value would have
occurred as a seed during 1993. The generation of these counterexamples remains
well beyond the capabilities of current tools, and presents a substantial scientific
challenge.

4 Survey of Counterexample Generation

Given how important the detection and presentation of counterexamples is to
applications of formal methods, it is surprising how comparatively little attention
it has received. A community of researchers interested in the subject is now
beginning to emerge, with the second ‘Workshop on Disproving’ due to be held
at CADE 20052.

Much past research has focused on fast generation of counterexamples to con-
jectures which are in some sense ‘obviously’ false. Model generators like MACE,
[9], and FINDER, [17], can be used to enumerate finite domains to search for
counterexamples. The Isabelle theorem prover, [11], now includes a tactic to
search for small counterexamples, called quick-check, [5]. For infinite data struc-
tures with recursive definitions, methods have been proposed by Protzen, [15],
and Reif, [16]. Both can deal with small problems quite effectively, but are not
suitable for large counterexamples, or for domains that cannot be easily enu-
merated. Model generation has also been proposed as a method for refuting
non-theorems, [1, 20].

Model checking can be a very effective method for finding counterexamples
to false verification conditions, particularly in finite domains. As we have al-
ready remarked, the fact that model checking can produce counterexamples as
well as provide guarantees is one reason for its increasing popularity in industry.
Many researchers are now working on extending model checkers to non-finite
domains, using ‘lazy’ and ‘on-the-fly’ techniques to construct the infinite models
as they are checked (e.g. [4]), with good results. Another large branch of current
model checking research is in counterexample guided abstraction refinement, [6,
3]. Here, the processing of counterexamples is used to guide management of
the level of detail that is taken into account when attempting verification of
a program, balancing tractability of the model checking problem against over-
abstraction. Theorem provers can be used to check the feasibility of counterexam-
1 Knuth stated in the specification that the seed value can be any (large) number

under 1 000 000 000. This is a known bug - the Numerical Recipes in C website
contains a patch to fix the code.

2 http://www.cs.chalmers.se/~ahrendt/cade20-ws-disproving/



ple traces, [2]. A further current direction involves passing unproven conjectures
from a theorem prover to a model checker to search for counterexamples, [13].

Our work in Edinburgh has lead to the development of the Coral system3,
which refutes incorrect inductive conjectures using a first-order theorem prover
adapted to follow the ‘proof by consistency strategy’ of Comon and Nieuwenhuis,
[7]. Its major successes have been in the field of protocol analysis, where it has
been used to discover 6 previously unknown attacks on 3 group protocols, [18,
19]. The protocols are modelled inductively following Paulson, [12], and the
attacks found as counterexamples to security conjectures. Coral proved to be
particularly suitable for group protocols because they can be formalised very
naturally in an inductive model. This is something that rival approaches, such
as model checking, struggle with. In future, we plan to experiment with Coral
in other areas of formal verification.

Many of the big problems remain unsolved. For example, how to deal ade-
quately with arithmetic, or how to explore very large or non-trivially enumerable
spaces for counterexamples. Some current directions include trying to use more
information from failed proof attempts to guide the counterexample search, [8],
and to suggest patches for incorrect conjectures, [10].

5 Summary

We have argued that disproof and counterexample generation are vital areas
for research in the development of practical program verification systems. There
remain many exciting open problems, and milestones to pass, such as the auto-
matic generation of counterexamples for Knuth’s random number bug, described
above. Non-theorem detection therefore deserves to be included as a core theme
in the Grand Challenge of a Program Verifier.

References

1. W. Ahrendt. Deductive search for errors in free data type specifications using model
generation. In A. Voronkov, editor, 18th Conference on Automated Deduction,
volume 2392 of Lecture Notes in Computer Science, pages 211–225. Springer, 2002.

2. T. Ball, B. Cook, S. Lahiri, and L. Zhang. Zapato: Automatic theorem proving for
predicate abstraction refinement. In Rajeev Alur and Doron Peled, editors, CAV,
volume 3114 of Lecture Notes in Computer Science, pages 457–461. Springer, 2004.

3. T. Ball and S. Rajamani. The SLAM toolkit. In Gérard Berry, Hubert Comon, and
Alain Finkel, editors, CAV, volume 2102 of Lecture Notes in Computer Science,
pages 260–264. Springer, 2001.

4. D. Basin, S. Mödersheim, and L. Viganò. An on-the-fly model-checker for security
protocol analysis. In Proceedings of the 2003 European Symposium on Research in
Computer Security, pages 253–270, 2003. Extended version available as Technical
Report 404, ETH Zurich.

3 http://homepages.inf.ed.ac.uk/gsteel/coral



5. Stefan Berghofer and Tobias Nipkow. Random testing in isabelle/hol. In 2nd
International Conference on Software Engineering and Formal Methods (SEFM
2004), pages 230–239, 2004.

6. Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. Jour-
nal of the Association for Computing Machinery, 50(5):752–794, 2003.

7. H. Comon and R. Nieuwenhuis. Induction = I-Axiomatization + First-Order Con-
sistency. Information and Computation, 159(1-2):151–186, May/June 2000.

8. L. A. Dennis. The use of proof planning critics to diagnose errors in the base
cases of recursive programs. In W. Ahrendt, P. Baumgartner, and H. de Nivelle,
editors, IJCAR 2004 Workshop on Disproving: Non-Theorems, Non-Validity, Non-
Provability, pages 47–58, 2004.

9. W. McCune. A Davis Putnam program and its application to finite first order
model search. Technical report, Argonne National Laboratory, 1994.

10. R. Monroy. Predicate synthesis for correcting faulty conjectures: The proof plan-
ning paradigm. In Automated Software Engineering, pages 247–269, 2003.

11. L.C. Paulson. The foundation of a generic theorem prover. JAR, 5:363–397, 1989.
12. L.C. Paulson. The Inductive Approach to Verifying Cryptographic Protocols. Jour-

nal of Computer Security, 6:85–128, 1998.
13. L. Pike, P. Miner, and W. Torres. Model checking failed conjectures in theorem

proving: a case study. Technical Report NASA/TM–2004–213278, NASA Lang-
ley Research Center, November 2004. Available at http://www.cs.indiana.edu/

~lepike/pub_pages/unproven.html.
14. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.

Numerical Recipes in C: The Art of Scientific Computing. Cambridge University
Press, 1992.

15. M. Protzen. Disproving conjectures. In D. Kapur, editor, 11th Conference on
Automated Deduction, pages 340–354, Saratoga Springs, NY, USA, June 1992.
Published as Springer Lecture Notes in Artificial Intelligence, No 607.

16. W. Reif, G. Schellhorn, and A. Thums. Flaw detection in formal specifications. In
IJCAR’01, pages 642–657, 2001.

17. J. Slaney. FINDER: Finite Domain Enumerator. Australian National Univer-
sity, 1995. Available from ftp://arp.anu.edu.au/pub/papers/slaney/finder/

finder.ps.gz.
18. G. Steel and A. Bundy. Attacking group multicast key management protocols using

CORAL. Electronic Notes in Theoretical Computer Science (ENTCS), 125(1):125–
144, 2004. Also available as Informatics Research Report EDI-INF-RR-0241. Pre-
sented at the ARSPA workshop 2004.

19. G. Steel, A. Bundy, and M. Maidl. Attacking a protocol for group key agreement by
refuting incorrect inductive conjectures. In D. Basin and M. Rusinowitch, editors,
Proceedings of the International Joint Conference on Automated Reasoning, num-
ber 3097 in Lecture Notes in Artificial Intelligence, pages 137–151, Cork, Ireland,
July 2004. Springer-Verlag Heidelberg.

20. T. Weber. Bounded model generation for isabelle/hol. In IJCAR 2004 Workshop
on Disproving - Non-Theorems, Non-Provability, pages 27–36, Cork, Ireland, 2004.


