
Model Checking: Back and Forth Between Hardware
and Software

Edmund Clarke1, Anubhav Gupta1, Himanshu Jain1, and Helmut Veith2

1 School of Computer Science, Carnegie Mellon University
{emc, anubhav, hjain }@cs.cmu.edu

2 Institut für Informatik (I-7), Technische Universität München, Germany
veith@in.tum.de

Abstract. The interplay back and forth between software model checking and
hardware model checking has been fruitful for both. Originally intended for the
analysis of concurrent software, model checking was first used in hardware ver-
ification. The abstraction methods developed for hardware verification however
have been a stepping stone for the new generation of software verification tools
including SLAM, BLAST, and MAGIC which focus on control-intensive soft-
ware in embedded systems. Most recently, the experience with software verifica-
tion is currently providing new leverage for verifying hardware designs in high
level languages.

1 From Software Verification to Hardware Verification

The origins of model checking date back to the early 1980s, when Clarke and
Emerson [5] and, independently, Queille and Sifakis [19] introduced a new algorithmic
approach for the verification of computer systems. Their approach amounts to checking
the satisfaction of a logical specification over a system model which is represented
by an annotated directed graph; hence, the termmodel checking. Prior to that, the
use of temporal logic for the analysis and specification of computer systems had been
advocated by Pnueli [18], and model checking has in fact been employing variants of
temporal logic as the predominant specification language ever since.

Experiments with early model checkers however quickly made clear that the size of
the model represents the crucial technical barrier for realizing the full potential of model
checking. In fact, the progress on the state explosion problem is the key to appreciating
the technical achievements in model checking during the last decades. The development
of symbolic model checking[3, 17] was arguably a turning point in the formal methods
field. Employing a combination of binary decision diagrams and fixed-point algorithms,
the symbolic model verifier (SMV) became the first model checker to verify models
with hundreds of Boolean variables and a tool to benchmark new ideas for more than a
decade.

Model checking was originally designed for the verification of finite state systems.
Although the first practically useful applications of model checking were oriented
towards hardware verification, where the finite state restriction comes naturally, the
method was originally conceived of as an approach to software verification. The early



Spec

Abstract
Counterexample

Correct

Model Checker

Static
Analysis

Abstract
Model

Counterexample
Analysis

Counterexample

C Code

spurious

good

Decision
Procedure

Fig. 1. Counterexample-Guided Abstraction Refinement for Software.

papers on model checking clearly drew their motivations from the software area,
focusing in particular on concurrency properties to be verified over the synchronization
skeleton of a program, i.e., a finite abstract model which preserves the relevant behavior
for interprocess communication [6]. This setting reflects three major principles in
successful model checking applications:

1. The separation of control flow and data flow in the system.
2. Abstraction techniques which enable us to remove significant parts of the data flow

from the system.
3. Efficient tools to check properties on the abstracted systems.

Since hardware designs typically have a relatively clear separation of data and control,
and are finite state, it was very natural to apply model checking to verify hardware
systems [11]. In combination with symbolic model checking, this resulted in making
hardware model checking a success.

Starting with [8], there has been a lot of work in devising systematic approaches
to abstraction. Abstraction techniques reduce the program state space by mapping
the set of states of the actual system to an abstract, and smaller, set of states in
a way that preserves the actual behaviors of the system. In systems where there is
no clear distinction between the control flow and data flow, it may be necessary to
refine the abstraction. This abstraction refinement process has been automated by
the counterexample-guided abstraction refinement paradigm [16, 7, 1], or CEGAR for
short. CEGAR starts with a coarse abstraction, and if it is found that an error trace
reported by the model checker does not occur in the original program, the error trace
is used to refine the abstraction, and the process proceeds until the property is either
verified or disproved. Note that model checking and abstract interpretation [12] share
many common techniques which deserve further exploration.

2 From Hardware Verification to Software Verification

The last several years have seen the development of a new generation of software model
checkers such as SLAM, BLAST and MAGIC [1, 14, 4] which are based on predicate
abstraction [13] and counterexample-guided abstraction refinement (CEGAR). Note
that the CEGAR approach, first proposed for hardware verification [16, 7], lends itself
equally naturally for software [1]. Figure 1 illustrates the application of CEGAR to



Verifying CompilerDigital Signal Processors

Floating Point Units

Graphical Processors
Financial Software

Embedded Software

Device Drivers

Hardware Software

Data
Intensive

Control
Intensive

Cache Coherence
Protocols

Bus Controllers

Fig. 2. Control-intensive versus data-intensive systems.

software. This new generation of software model checkers has been quite successful
for specific classes of software, most notably device drivers, embedded software, and
system software whose specifications are closely related to the control flow. While
predicate abstraction is highly versatile in expressing the control flow conditions of
a program, it is apparently much harder to reason about data, in particular dynamic data
structures.

An alternative approach is taken by the CBMC model checker [10]. CBMC is based
on bounded model checking [2], i.e., counterexample search using a SAT procedure.
CBMC exploits the relatively simple semantics of the C language by describing a SAT
formula which amounts to a symbolic unwinding of the C program. While this approach
in principle allows to account for complicated dynamic data structures, current SAT
solvers enable us only to perform a relatively small number of unwindings.

3 Back to Hardware

Most model-checkers used in the hardware industry use a very low level design,
usually a netlist, but time-to-market requirements have rushed the Electronic Design
and Automation (EDA) industry towards design paradigms that offer a very high level
of abstraction. This high level can shorten the design time by hiding implementation
details and by merging design layers. As part of this process, an abundance of C-like
system design languages like SystemC, SpecC has emerged. They promise to allow
joint modelling of both the hardware and software components of a system using a
language that is well-known to engineers.

Some fragments of these languages are synthesizable, and thus allow the application
of netlist or RTL-based formal verification tools. However, the higher abstraction levels
offered by most of these languages are not yet amenable to rigorous, formal verification.
This is caused by the high degree of asynchronous concurrency used by the models,
which requires thread interleaving semantics. Since languages like SystemC are closer
to concurrent software than to a traditional hardware description, one needs techniques
from software verification to verify programs written in these languages [15].



4 Conclusion

Control-Intensive versus Data-Intensive Systems

We have argued that the success of model checking in hardware is closely related to the
relatively clear separation between the control flow and the data flow. As illustrated in
Figure 2, this phenomenon occurs for both hardware and software, and explains why
model checking is particularly useful for control-intensive software e.g. in embedded
systems, device drivers etc.

Perspectives

Going back and forth between hardware and software, the research in model checking
is gradually pushing the limits of the method by means of automated or manually
assisted abstraction, and has extended the reach of model checking quite significantly.
As expressed in Rushby’s notion of “disappearing formal methods”, our goal is for
model checking to finally become a push-button technology for certain classes of
software such that the trade-off between the preciseness and the computational cost
of the correctness analysis can be controlled by a few simple parameters. Generally
though, the principal undecidability of virtually all questions in software verification
makes clear that there is no silver bullet for verification, and there will always be a need
to design model checking methods specific to problem classes.

References

1. T. Ball and S. K. Rajamani. Automatically Validating Temporal Safety Properties of
Interfaces. InProc. Model Checking Software, 8th International SPIN Workshop, volume
2057 of LNCS, pages 103–122, 2001.

2. A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking using SAT
procedures instead of BDDs. InProc. 36th Conference on Design Automation (DAC), pages
317–320, 1999.

3. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill and L. J. Hwang. Symbolic Model
Checking:1020 States and Beyond.In Proceedings of the Fifth Annual IEEE Symposium on
Logic in Computer Science, 1990.

4. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular Verification of Software
Components in C. InProc. 25th Int. Conference on Software Engineering (ICSE), pages
385–395, 2003. Extended version in IEEE Transactions on Software Engineering, 2004.

5. E. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. InLogics of Programs: Workshop, volume 131 ofLNCS,
pages 52–71. 1981.

6. E. Clarke, E. A. Emerson, A. P. Sistla. Automatic Verification of Finite State Concurrent
Systems Using Temporal Logic Specifications: A Practical Approach.Proc. POPL, pages
117-126, 1983.

7. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. InProc. 12th Int. Conf. Computer Aided Verification (CAV), volume 1855 of
LNCS, pages 154–169, 2000. Extended version inJ. ACM50(5): 752–794, 2003.

8. E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction.ACM Transactions
on Programming Languages and Systems, 16(5):1512–1542, September 1994.



9. E. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, Cambridge, MA, 1999.
10. E. Clarke, D. Kroening and F. Lerda. A Tool for Checking ANSI-C Programs. InProc.

TACAS, pages 168–176, 2004.
11. E. Clarke and B. Mishra. Automatic Verification of Asynchronous Circuits. InProc. Logic

of Programs, pages 101-115, 1983.
12. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of

programs by construction or approximation of fixpoints. InProc. Symposium on Principles
of Programming Languages (POPL), pages 238–252, 1977.

13. S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. InProc. Computer
Aided Verification (CAV), volume 1254 of LNCS, pages 72–83, 1997.

14. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. InProc. ACM
SIGPLAN-SIGACT Conference on Principles of Programming Languages, pages 58–70,
2002.

15. H. Jain, D. Kroening, and E. Clarke. Verification of SpecC using predicate abstraction. In
MEMOCODE 04, pages 7–16. IEEE, 2004.

16. R. P. Kurshan.Computer-Aided Verification of Coordinating Processes. Princeton University
Press, Princeton, NJ, 1994.

17. K. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem.
Kluwer Academic Publishers, Dordrecht, 1993.

18. A. Pnueli. The temporal logic of programs. InProc. 18th Symposium on Foundations of
Computer Science (FOCS), pages 46–67, 1977.

19. J. Queille and J. Sifakis. Specification and verification of concurrent systems in CESAR. In
Proc. 5th Int. Symposium in Programming, volume 137 ofLNCS, pages 337–351, 1982.


