
From the How to the What

Tiziana Margaria1 and Bernhard Steffen2

1Universität Göttingen, Lotzestr. 16-18, 37083 Göttingen (Germany),
margaria@cs.uni-goettingen.de

2Universität Dortmund, Baroper Str. 301, 44221 Dortmund (Germany),
steffen@cs.uni-dortmund.de

Abstract. In this paper, we consider the Grand Challenge under a very
specific perspective: the enabling of application experts without program-
ming knowledge to reliably model their business processes/applications
in a fashion that allows for a subsequent automatic realization on a given
platform. This goal, which aims at simplifying the tasks of the many at
the cost of ambitious and laborious tasks for the few, adds a new dimen-
sion to the techniques and concepts aimed at by the Grand Challenge:
the application-specific design of platforms tailored for the intended goal.
We are convinced that the outlined perspective provides a realistic and
economically important milestone for the Grand Challenge.

1 Motivation

Since the very beginning of computer science, the mismatch between design
for machines and design for brains has been a constant pain, and a constant
driver for innovation: it was always clear that descriptions that are good for
machine processing are inadequate for an intuitive human understanding, and
that descriptions which are structured for easy comprehension contain a lot of
’syntactic overhead’, that typically slows down their automatic processing.

Compilers were designed to overcome, or better to weaken, this mismatch:
Rather than trying to construct machines that work as humans think, it seemed
more appropriate to translate comprehensible descriptions into machine-adequate
representations. Besides classical compilers that translate high-level program-
ming language into machine code there are also other means of automated code
generation from more abstract descriptions: to this group belong parser genera-
tors, data flow analysis generators, compiler generators, and all the modern OO-
tools that translate, e.g., UML descriptions into code fragments. Most drastic are
those versions of Model Driven Design (MDD) that aim at totally replacing the
need of programming for most application development using model construc-
tion. Thus the original desire to lift low-level machine code (prescribing How to
run the machine) to more abstract programs (describing What to achieve) has
become reality at increasing levels of abstraction from the hardware, and lead-
ing to extreme approaches like requirements-based programming, which aims at
automatically making the user’s or customer’s requirements executable.



2 Background

The fact that writing a parser, or even a compiler (which has been a real enter-
prise in the ’60s and early ’70s) has become meanwhile almost a trivial exercise,
and, perhaps even more surprisingly, the fact that global heterogeneous software
systems comprising several hundreds of millions of lines of code do quite a re-
liable service, certainly bases on conceptual advances. In particular techniques
like type checking have had a strong impact on theory and practice: they filter
out e.g. typos extremely efficiently and user friendly, and at the same time they
guarantee an abstract notion of consistency. However, in our opinion, the cur-
rent reliability of huge systems that run on heterogeneous platforms and that are
increasingly based on third party legacy components, like middleware, container
software, security protocols etc., is due to other, less scientific reasons:

1. Extensive use of exception mechanisms, especially in the presence of third
party legacy components. In particular the code for internet applications
often comprises more than 80% of such non-functional code in order to deal
with the uncertainties of the net-based context.

2. Pattern-based programming styles, which do not focus on conciseness or ef-
ficiency of the code but on its comprehensibility.

3. Syntax-based tool support. Of course, semantics-based tools have a much
higher potential, but, except for some niche success stories like the SLAM-
project [1, 2], they did not really reach so far the broad industrial practice.

4. Testing and post-release debugging by a huge user community.

These four mechanisms have a huge combined pragmatic impact, which is
probably the reason for the absence of the ’software crisis’ forecasted long ago.
However, they are in our opinion not a real safeguard: ultimately, they do not
scale. They carry a long way, but they are deemed to fail in the long run as
complex software is inherently meta-stable. A tested system may run for years,
apparently very reliably, until some apparently minor modification leads to some
totally uncontrollable effects. We all experienced situations where such minor
modifications to systems considered stable suddenly revealed some deeper hidden
bugs, which then took an enormous effort to repair. The larger the systems, the
more distributed the features, the larger the project teams, the more likely is
the long-term meta-stability of the product. The reason for this is that systems
evolving over the years escape more and more our comprehension and thus our
prevention and control. Late discovered errors may be so fatal that it is almost
impossible to repair the system. Thus they are business-critical for organizations
that produce and use those systems.

3 Our Proposal: Application-Specific Solutions

We believe that there is no general cure to this problem. Rather, we are convinced
that we can only maintain control of complex systems if we develop tailored so-
lutions for application-specific scenarios, since only for very restrictive settings



- based on clear patterns with predefined meaning - we will be able to cap-
ture enough semantics to regain sufficient control. This is important since with
the variety of systems, platforms, technologies, communication and execution
paradigms comes the need to bridge all this diversity in a harmonic way.

Our approach, called Aggressive Model Driven Design (AMDD), aims at
decomposing the problem of compatibility and consistency of software (mass-)
construction and customization into a

– (global) application-level problem, where compatibility and consistency is
not a platform issue, but an issue of application/business process modelling,
and therefore a matter of a considerably higher level of abstraction, and a

– platform-oriented synthesis/compilation issue, which provides the adequate
’technology mapping’ that bridges the gap from the modelling-level over the
programming language level to the target code.

The ultimate goal of this approach is to enable application experts without
programming knowledge to reliably model their business processes in a fashion
that allows for a subsequent automatic realization on a given platform. Thus, in
contrast to usual compiler scenarios, which are designed to economically cover
a wide range of source languages and target machines, our approach aims at
automatically putting application/business-level models into operation. This is
valuable and appreciated even at the price of a very expensive source/target
mapping for each individual application/platform pair, and comes together with
specific restrictions (e.g to respect standards and platform constraints) and sup-
ported patterns. This approach of domain/application-specific solutions goes far
beyond established approaches based on domain-specific languages, as it essen-
tially sees the role of the IT as a domain/application-specific platform provider.
In fact, with AMDD the IT people (in contrast with the business/application
experts), are active mainly prior to the application/process development to:

– support the domain modelling,
– design the most relevant patterns,
– provide the vital analysis, synthesis and compilation methods, and
– define constraints that guide the pattern-based application development in

a way that guarantees the applicability of the provided methods and the
reliability of the applications when running on their dedicated platform.

4 Grand Challenge: The AMDD-Persective

We are convinced that products that provide such application/platform-pairs
for specific business solutions will have an enormous market already in the near
future, as many current businesses complain about the delays imposed by the
usual ’loop’ via the IT section, even when the current business process only needs
some minor modification.

On the other hand, this new scenario also provides a very interesting oppor-
tunity for the compiler community, as it allows one to set the scene in such a way



that powerful analysis and verification methods work. In fact, rather than being
confronted with a fixed scenario, typically a programming language and a class
of architectures, and with the question, what can be done under these circum-
stance, the new setting is goal oriented: We must provide a scenario, where the
application expert is able to reliably control his business processes by himself.

As indicated in the previous section, this comprises not only the development
of powerful synthesis and compilation techniques, but also

– the development of adequate domain modelling and design patterns (design
for verification/synthesis/compilation), and

– the definition of (constraint-based) guiding mechanisms for the application
expert that guarantee the safe deployment of the developed applications
on its dedicated platform. In particular, this comprises a new quality of
diagnostic information and feedback: it is the application expert who must
be able to correct his processes in case of problems.

The applicability range of this perspective of the Grand Challenge is, of course,
quite restrictive, as it requires the development of very specific setups. On the
other hand, it goes beyond the vision of a ’Verifying Compiler’, as it explicitly
includes the definition of adequate setups, and significantly extends the corre-
sponding requirements.

The next section will briefly sketch a framework and some, admittedly still
rather restrictive, scenarios where this goal has been achieved: in the defini-
tion of Value-Added Telecommunication Services, for Test Management of Com-
puter/Telephony Applications, and for Personalized Online Services.

5 AMDD and the ABC Framework

AMDD aims at the top-down organization of Service interoperation, which moves
most of the recurring problems of compatibility and consistency of software
(mass) construction and customization from the coding and integration level
to the modelling level (see Fig. 1). Rather than using component models - as
usual in today’s Component Based Development paradigm - just as a means of
specification, which

– need to be compiled to become a ‘real thing’ (e.g., a component of a software
library),

– must be updated (but typically are not), whenever the real thing changes
– typically only provide a local view of a portion or an aspect of a system,

we use application models (called Service Logic Graphs (SLGs) in the ABC). Ap-
plication models are the center of the design activity, becoming the first class en-
tities of the global system design process. In such an approach, as briefly sketched
in Sect. 5.1,

– libraries are established at the modelling level: building blocks are (elemen-
tary) models, rather than software components,



Fig. 1. AMDD: From the How to the What

– applications are specified by model combinations (composition, configura-
tion, superposition, conjunction...), viewed as a set of constraints that the
implementation needs to satisfy,

– global model combinations are compiled (or synthesized, e.g. by solving all
the imposed constraints) into a homogeneous solution for a desired platform,

– application changes (upgrades, customer-specific adaptations, new versions,
etc.) happen primarily (and ideally, only) at the modelling level, with a
subsequent global recompilation or re-synthesis.

This aggressive style of model-driven development [12] strictly separates compat-
ibility and migration issues from model/functionality composition and heavily
relies on compilable and synthesisable models. This way it is possible to better
control or even in some cases overcome the problem of incompatibility between
(global) models, (global) implementations, and their components, because, due
to the chosen setups, compatibility can be established and guaranteed at de-
velopment time, and later-on maintained by (semi-) automatic compilation and
synthesis.

In fact, AMDD, when applicable, has the potential to drastically reduce the
long-term costs due to version incompatibility, system migration and upgrading.
Thus it helps protecting the investment in the software infrastructure. We are
therefore convinced that this aggressive style of model-driven development will
become the development style at least for mass-customized software in the future.



5.1 An AMDD-Realization

The Application Building Center (ABC) developed at METAFrame Technologies
in cooperation with the University of Dortmund promotes the AMDD-style of
development in order to move the application development for certain classes
of applications towards the application expert. The ABC has been successfully
used in the design and customization of Intelligent Network Services [8], test
environments [7, 11], distributed online decision support systems [5, 4], and Web
Services [9], and it is currently being used in project for Enterprise Resource
Planning (ERP) and Supply Chain Management (SCM).

Even though the ABC should only be regarded as a first step of AMDD
approach, it comprises the essential points of AMDD, that concern dealing with
a heterogeneous landscape of models, supporting a number of formal methods,
providing tools that enforce formal-methods based validation and verification,
and providing automatic deployment and maintenance support [9]. The rest of
the paper will briefly sketch some running application scenarios.

6 Running Scenarios

This section presents three practically relevant applications, ranging from an
enhancement of the workflow capabilities of a content management system for
non-experts, over our Integrated Test Environment, which enables test experts
without deep programming knowledge to create and modify their testing scenar-
ios, to the Online Conference Service, a rather complex distributed, role-based,
and personalized online decision support system.

6.1 Enhancing Workflows of a Content Management System

In this project, we used the restrictive workflow management functionalities of
a commercial content management system (CMS) as a basis for a component
library in the ABC, added global features, like e.g. a version management func-
tionality, and taxonomically classified the resulting library of functionalities. This
directly enabled us to graphically design workflows far beyond the capabilities
of the original CMS and to embed them in other projects.

Besides increasing the modelling power and the range of applicability, using
the ABC also allowed us to check the consistency of the workflows. A simple but
important constraint we checked was that ’a new page will never be published
before it is approved’. After a simple translation into temporal logic, this con-
straint can now automatically be model checked for any of the workflows within
a small fraction of a second. It turned out that already this constraint did not
hold for quite some standard workflows of the CMS.

Thus, using the model checking feature of the ABC, it was straightforward
to enhance the CMS environment to avoid such mistakes once and forever, and
to combine the CMS features for an editorial workflow with additional features
like version control, automated update cycles, and features for fault tolerance,
e.g. for taking care of holidays or illness during the distribution of labor.



Fig. 2. Architecture of the Test Setting for the CTI Application

6.2 ITE: The Integrated Test Environment

A completely different application is the Integrated Testing Environment (ITE)
for system level test of complex distributed systems [13, 7] developed in a project
with Siemens ICN in Witten (Germany). The core of the ITE is the test coordi-
nator, an independent system that drives the generation, execution, evaluation
and management of the system-level tests. In general, it has access to all the
involved subsystems and can manage the test execution through a coordination
of different, heterogeneous test tools. These test tools, which locally monitor and
steer the behavior of the software on the different clients/servers, are technically
treated just as additional units under test, which led to the system depicted in
Fig. 2. The ITE has been successfully applied along real-life examples of IP-based
and telecommunication-based solutions: the test of a web-based application (the
Online Conference Service described below [14]) and the test of IP-based tele-
phony scenarios (e.g. Siemens’ testing of the Deutsche Telekom’s Personal Call
Manager application [7], which supports among other features the role based,
web-based reconfiguration of virtual switches).

In this project we practiced the AMDD approach at two levels:

– the modelling of the test environment itself, and
– the modelling of test cases.

The benefits of the AMDD approach became apparent once a drastic change
of the requirements of the test scenario in the telephony application occurred,
which meant a new quality of complexity along three dimensions ([7]):



– testing over the internet,
– testing virtual clusters, and
– testing a controlling system in a non-steady state (during reconfiguration).

We could inherit a lot of the conceptual structure of the ’old’ ITE for the new
version of the test environment. Even more striking was the fact that the test
cases hardly needed any adaption, except for some specific changes directly re-
lated to the functionality changes. Thus a change that Siemens considered to be
’close to impossible’ became a matter of a few weeks [12].

6.3 OCS: The Online Conference Service

The OCS (Online Conference Service) is a server-based Java application that
customizes a heavily workflow-oriented application built with the ABC [5, 4,
6]. It proactively helps authors, Program Committee chairs, Program Commit-
tee members, and reviewers to cooperate efficiently during their collaborative
handling of the composition of a conference program. The service provides a
timely, transparent, and secure handling of the papers and of the related tasks
for submission, review, report and decision management. Several security and
confidentiality precautions have been taken, in order to ensure proper handling
of privacy and of intellectual property sensitive information. In particular,

– the service can be accessed only by registered users,
– users can freely register only for the role Author,
– the roles Reviewer, PC Member, and PC Chair are sensitive and conferred to

users by the administrator only,
– users in sensitive roles are granted well-defined access rights to paper infor-

mation,
– users in sensitive roles agree to treat all data they access within the service

as confidential.

The service has been successfully used for over 50 computer science con-
ferences, including the full ETAPS Conferences (with 5 instances of the OCS
running in parallel). The Online Conference Service allows fully customizable,
role-based business-process definitions, it is tailored for personalized support of
each participant in the course of the operations of a virtual Program Committee
meeting, and it is customizable and flexibly reconfigurable online at any time
for each role, for each conference, and for each user [3].

The AMDD approach drastically simplified the realization and organization
of the steady evolution of the OCS, which was guided by the growing demands
of the users. It allowed to completely separate the issues of functionality imple-
mentation from the workflow (process) modelling (in term of SLG’s), to reuse
in particular the constraints for the permission handling. In fact, this property
remained even true when developing an Online Journal Service (OJS), which
required to change most of the workflows, and the addition of new functionality.



7 Conclusions and Perspectives

We have presented our favorite perspective of the Grand Challenge: the technical
realization of Aggressive Model Driven Design (AMDD). This concerns enabling
application experts without programming knowledge to reliably model their busi-
ness processes in a fashion that allows for a subsequent automatic realization on
a given platform. In contrast to usual compiler scenarios, which are designed
to economically cover a wide range of source languages and target machines,
this requires the dedicated treatment of each individual application/platform-
pair together with its specific restrictions and supported patterns. This approach
of domain/application-specific solutions goes far beyond established approaches
based on domain-specific languages, as it essentially sees the role of the IT as a
domain/application-specific platform provider, active mainly prior to the appli-
cation/process development.

In order to achieve this goal, which makes application development dif-
ficult for the few (the providers of domain-specific platforms), but easy for
the many (the application experts), the domain-specific platform must enforce
all the necessary constraints necessary for a safe deployment of the designed
processes/applications, and it must give application-level feedback to the process
designers. This is only possible on the basis of very strong analysis and verifica-
tion techniques, specifically adapted and applied to the domain-specific scenar-
ios.

Of course, AMDD will never replace genuine application development, as it
assumes techniques to be able to solve problems (like synthesis or technology
mapping) which are undecidable in general. On the other hand, more than 90%
of the application development costs arise worldwide at a rather primitive devel-
opment level, during routine application programming or software update, where
there are no technological or design challenges. There, the major problem faced
is software quantity rather than achievement of very high conceptual complex-
ity, and automation should be largely possible. AMDD is intended to address (a
significant part of) this 90% ’niche’, which we consider a particularly interesting
and realistic scenario also for the Grand Challenge.

References

1. T. Ball, S. Rajamani: Automatically Validating Temporal Safety Properties of In-
terfaces, SPIN 2001, Workshop on Model Checking of Software, LNCS 2057, May
2001, pp. 103-122.

2. T. Ball, S. Rajamani: Debugging System Software via Static Analysis, POPL 2002,
January 2002, pages1-3.

3. M. Karusseit, T. Margaria: Feature-based Modelling of a Complex, Online-
Reconfigurable Decision Support Service WWV’05, 1st Int’l Workshop on Auto-
mated Specification and Verification of Web Sites, Valencia, Spain, March 14-15,
2005, – final version appears in ENTCS.

4. B. Lindner, T. Margaria, B. Steffen: Ein personalisierter Internetdienst für
wissenschaftliche Begutachtungs- prozesse - In Proc. GI-VOI-BITKOM- OCG-



TeleTrusT Konferenz on Elektronische Geschäftsprozesse (eBusi- ness Processes),
Universität Klagenfurt, Sept. 2001, http://syssec.uni-klu.ac.at/EBP2001/ .

5. T. Margaria: Components, Features, and Agents in the ABC, invited contribution
to the volume Components, Features, and Agents, PostWorkshop Proceedings of
the Dagstuhl Seminar on Objects, Agents and Features 7-21.3.2003, H.-D. Ehrich,
J.-J. Meyer, and M. Ryan eds., appears in LNCS, Springer Verlag.

6. T. Margaria, M. Karusseit: Community Usage of the Online Conference Service:
an Experience Report from three CS Conferences, 2nd IFIP Conference on ”e- com-
merce, e-business, e-government” (I3E 2002), Lisboa (P), 7-9 Oct. 2002, in ”To-
wards the Knowledge Society - eCommerce, eBusiness and eGovernment”, Kluwer
Academic Publishers, pp.497-511.

7. T. Margaria, O. Niese, B. Steffen, A. Erochok: System Level Testing of Virtual
Switch (Re-)Configuration over IP, Proc. IEEE European Test Workshop, Corfu
(GR), May 2002, IEEE Society Press.

8. T. Margaria, B. Steffen: METAFrame in Practice: Design of Intelligent Network
Services, in ”Correct System Design - Issues, Methods and Perspectives”, LNCS
1710, Springer-Verlag, 1999, pp. 390-415.

9. T.Margaria, B. Steffen: Second-Order Semantic Web Proc. SEW-29, 29th Annual
IEEE/NASA Software Engineering Workshop, April 2005, Greenbelt (USA)., IEEE
Computer Soc. Press.

10. T. Margaria, B. Steffen: Backtracking-free Design Planning by Automatic Synthesis
in METAFrame. Proc. of Int. Conf. on Fundamental Aspects of Software Engineer-
ing (FASE’98), Lisbon, Portugal. (eds.: E. Astesiano), Lecture Notes in Computer
Science (LNCS), Vol. 1382, pp. 188–204. Springer-Verlag, Heidelberg, Germany,
March 30 - April 3 1998.

11. T. Margaria, B. Steffen: Lightweight Coarse-grained Coordination: A Scalable
System-Level Approach, to appear in STTT, Int. Journal on Software Tools for
Technology Transfer, Springer-Verlag, 2003.

12. T. Margaria, B. Steffen: Aggressive Model Driven Development of Broadband Ap-
plications. invited contribution for the book: Delivering Broadband Applications: A
Comprehensive Report, IEC, Int. Engineering Consortium, Chicago (USA), 2004.

13. O. Niese, T. Margaria, A. Hagerer, M. Nagelmann, B. Steffen, G. Brune, H. Ide:
An automated testing environment for CTI systems using concepts for specification
and verification of workflows. Annual Review of Communication, Int. Engineering
Consortium Chicago (USA), Vol. 54, pp. 927-936, IEC, 2001.

14. O.Niese, T. Margaria, B. Steffen: Demonstration of an Automated Integrated Test
Environment for Web-based Applications, - in ”Model Checking of Software”, Proc.
SPIN 2002, 9th Int. SPIN Workshop on Applications of Model Checking, satellite
Workshop to ETAPS 2002, Grenoble (F), April 2002, LNCS N. 2318, pp. 250-253,
Springer Verlag.


