
Programming with Proofs: Language-Based

Approaches to Totally Correct Software

Aaron Stump

Computer Science and Engineering

Washington University in St. Louis

St. Louis, Missouri, USA

1 Introduction

Tremendous progress has been made in automated and semi-automated verifi-
cation since the seminal works on program verification. Automated deductive
techniques like model checking have been highly successful for many verification
tasks (e.g., [17, 18, 13]). Impressive advances continue to be made in static
analysis, type systems, and static bug finding (e.g., [21, 12]). These approaches
aim to verify code or find bugs in existing systems as automatically as possible,
with as little developer help as possible. This has been the aim of the research
community for many years, possibly due in part to the bad reputation that
continues to plague full program verification. Theorem proving approaches to
program verification have continued to make advances, but indeed, they still are
generally applied only to the most critical applications (e.g., [7, 5, 16, 11]).

Despite the continuing advances in fully automated verification, it seems
unlikely that essentially automatic techniques will ever be able to scale to full
program verification. Given steadily increasing societal reliance on software
systems, totally correct code remains a vitally important goal. In this position
paper, I advocate an approach to full program verification in which programmers
write imperative programs and their computational proofs together as single
artifacts (Section 3). Despite the reliance on manual creation of proofs, the
approach I advocate is quite different from existing theorem-proving approaches,
which I argue are unlikely ever to be feasible for mainstream use (Section 2).
In Section 4, I show how the approach I advocate solves critical problems with
theorem proving, and I compare the approach to other verification approaches.

2 Problems with Theorem Proving

Program verification based on theorem proving deserves its unfavorable repu-
tation as unreasonably burdensome. Consider a typical contemporary example,
the Krakatoa tool for certifying Java and JavaCard programs [8]. The approach
implemented in this tool is state-of-the-art, and integrates many sophisticated



ideas and tools to provide a complete solution for an important real-world
verification problem. Nevertheless, despite its impressive strengths, Krakatoa
demonstrates the burdensome nature of current theorem-proving approaches.
Krakatoa works as follows. Verification problems consisting of Java programs
annotated with JML specifications are translated into verification problems in
an intermediate language called WHY. Another tool then generates verification
conditions (VCs) for the WHY problem, in the language of the Coq proof assis-
tant. Those VCs must now be proved by hand in Coq, possibly with the aid of
Coq tactics. The proof is conducted with respect to a model in Coq of parts of
Java carried through by the WHY tool. The number of highly complex artifacts
that the person doing the verification must understand here is simply too great.
She must be fluent in:

• the specification language, in this case JML. JML’s syntax resembles
Java’s, but as a logical language it nevertheless relies on mathematical, as
opposed to computational, intuitions.

• the proof language, in this case the language of Coq. As a higher-order
logic, this is far removed from something most developers are familiar
with. Effective verification in a tool like Coq also requires knowledge of a
sophisticated tactics library.

• the background theory; in this case, the partial model of Java in Coq.

• in the case of Krakatoa, the WHY intermediate language, and the encoding
of Java into WHY. This must be understood since the VCs are generated
via WHY. The encoding of Java into WHY is nontrivial, involving, for
example, an explicit model of the heap.

It is not reasonable to require a programmer to understand all these unfa-
miliar artifacts to solve even basic verification problems.

3 Language-Based Verification

Program verification based on manually proving extracted verification condi-
tions (I will call this “the VC approach”) seems destined to remain infeasible
for mainstream use. But there is another approach, known for a long time
to the type theory community, which does not suffer from these difficulties.
This is what Thorsten Altenkirch calls internal verification [2]. With internal
verification, proofs are data in the programming language, just like booleans
or strings. The type of a proof is the theorem it proves. Internally verified
functions require, as additional input arguments, proofs of their pre-conditions.
They produce, as additional outputs, proofs of their post-conditions. Proofs are
connected to the non-proof parts of programs by the type checker. My group1

has been developing two different languages based on this idea, which I will now

1See http://cl.cse.wustl.edu.

2



describe. The first is nearing a certain degree of maturity, while the second is
still in very early stages.

3.1 RSP1

RSP1 is a novel functional programming language that supports type-safe im-
perative programming with proofs. It builds on ideas from Martin-Löf type
theory, particularly as developed in the logical frameworks community, while
adding imperative features. The basic idea of logical frameworks is that proof
systems can be encoded as term-indexed datatypes. For example, we can de-
clare a datatype form of formulas in a standard way. Then a datatype pf of
proofs may be declared as a term-indexed datatype, where the index is a for-
mula. If p is an encoded formula, then (pf p) is a type. Term constructors
are then declared in such a way that mathematical proofs of formulas φ are in
one-one correspondence with values of type (pf phi), where phi is the object
of type form corresponding to φ. For example, we might have a constructor
ModusPonens which takes in formulas p and q, together with objects of type
(pf (implies p q)) and (pf p), and constructs a new term of type (pf q).
As this example shows, the types of constructors are dependent in RSP; the
return type of a use of ModusPonens depends on (i.e., mentions by name) some
of its input values. The static and dynamics semantics of RSP1 have been for-
malized, and the language has been proved type safe [20]. The major difference
between RSP1 and Martin-Löf type theory is that the latter relies on evaluat-
ing arbitrary terms at compile-time to doing type checking. This means that
imperative features cannot be added to Martin-Löf type theory in any straight-
forward way, and programs must all be (strongly) normalizing. RSP1 separates
representation and computation in such a way that imperative features and
general recursion can be handled, while retaining decidable type checking. The
essential technical idea is syntactically to keep impure constructs like effectful
operations out of types. To refer in a type to something like the result of a
possibly non-terminating computation or a read of mutable state, one uses a
hiding let construct to get a name for the result of the computation. This name
can then be used in types. An RSP1 type checker, interpreter, and compiler to
Ocaml have been implemented, in around 7000 lines of Ocaml.

We have implemented a number of nontrivial examples in RSP1. One is a
proof-producing validity checker called RVC (“Rogue Validity Checker”), which
is currently around 8000 lines of RSP1 (see [6] for a description of RVC in its
early stages). RVC decides validity of quantifier-free formulas modulo com-
bined background theories of linear integer arithmetic, uninterpreted functions,
and arrays. Due to type safety of RSP1, any proof produced by a successful
execution is guaranteed to check. Indeed, we have implemented a form of par-
tial evaluation which can slice out proofs from RVC’s code after type checking.
Other examples include statically validated mesh-manipulating algorithms from
Computer Graphics, where internal verification ensures that the data being ma-
nipulated always satisfy the property of being a mesh (with a particular Euler
characteristic) [3].

3



3.2 Local Heap Invariants in RSP1

RSP1 can be used to write programs with proofs showing that local invariants
of the heap are maintained. This can be done even though RSP1’s type system
does not allow explict mention of the results of reads and writes to mutable
state in types (which serve as specifications). In RSP1, pointers can be set to
point from one object to another. To express a local invariant, the programmer
can require that a proof of that invariant must be given when the pointer is set.
Such a proof is then available when the pointer is dereferenced. Technically,
this is done by making the pointer point from the first object to a dependent
record (as in [15]) containing the second object and the proof of the invariant.

Local heap invariants, while less expressive than global invariants involving,
for example, the transitive closure operator, are still quite powerful for specifying
mutable data structures. Several examples are explored in a recent paper from
my group, the most complex of which is verified insertion into a binary search
tree, where we statically verify the binary search tree property [20]. This is done
by associating, with each node in the tree, a lower and upper bound for all the
data at nodes reachable from the current node. This association is done using
an indexed type: nodes have type “node l d u”, where l is the lower bound,
u is the upper bound, and d is the data stored at the node itself. Setting the
pointer to the left subtree of a node requires a proof that the upper bound of
the left subtree is less than or equal to the data stored at the current node (and
similarly for the right subtree). Insertion then manipulates proofs showing that
these local invariants hold. Verification using local heap invariants has also been
studied recently by McPeak and Necula [10].

3.3 Reflected Evaluation Proofs

RSP1 is excellent for programming with proofs of properties of data. It can
even verify certain properties of mutable data structures, despite the fact that
types are forbidden to mention references. But RSP1 is not well suited to
verifying total correctness of algorithms, since it provides no way to reason about
executions of code. For example, it has no mechanisms to prove that code will
not encounter run-time errors like arithmetic exceptions or array-bounds errors.
Furthermore, specifications are implemented as datatypes, and proofs must be
defined by the programmer.

My group is pursuing a new, more fundamental approach to programming
with proofs. The idea begins by adopting assertions as our (computational)
specifications. That is, pre- and post-conditions of functions are expressed by
saying how certain pieces of code are expected to evaluate before and after the
function is called. For example, consider the obvious function which merges two
sorted lists to obtain a new sorted list with exactly the same elements. Part
of its computational specification is that calling the check sorted routine on
each input list before the function is called should return true. This way of
specifying code is likely to be very appealing to programmers, who are already
used to writing assertions. But the question then arises, if we are going to

4



program with proofs for these kinds of specifications, what are those proofs? The
answer is that they are reflected versions of the evaluation proofs inductively
defined by the operational semantics of the language. For each proof rule in
the operational semantics of the language, there is a built-in term constructor.
Reflected evaluation proofs showing that pieces of code execute in certain ways
can then be built by the programmer in the programming language. The type
of the proof is the evaluation statement it proves. For example, in the big-
step semantics for a language with an if-then-else (ITE) construct, there is a
rule that says: if the if-part of the ITE evaluates to true, and the then-part
evaluates to X, then the whole ITE evaluates to X. This proof rule is reflected
as a term constructor iftrue in the programming language. This constructor
takes in two reflected proofs corresponding to the two premises of the rule, and
constructs a term whose type is (if I then T else E ==> X).

The foundational nature of reflected evaluation proofs is appealing, but it is
not clear yet how the technical development of the idea should proceed. One
approach begins by defining static and dynamic semantics for such a language,
and proving the usual meta-theoretic results, in particular type preservation.
One technical novelty is that whenever a term is evaluated, the operational
semantics states that the corresponding reflected evaluation proof is actually
constructed, and placed on a stack. Subproofs are removed from this stack to
construct the new proof. These proofs are then accessible to programs via an
explicit reflection construct.

A second approach begins by developing a logical theory of executions of a
programming language (without embedded proofs). Executions are represented
by terms in some logic, most likely higher-order logic, for handling binding con-
structs in the programming language. Axioms are given defining a relation on
executions and pairs of terms, which holds when the first term evaluates to the
second according to the execution. An induction principle is formulated for
executions. Properties of programs may then be proved in the external ver-
ification style using higher-order logic and the axioms about executions. To
support internal verification, the programming language is then extend to allow
executions as program data. The meaning of a program is partly determined
by an elaboration function which maps a program (with its embedded proofs
in the internal verification style) into a higher-order logic proof about the com-
putational part of the program (i.e., without its embedded proofs). The goal
is then to define a type system which is sound for successful elaboration: well-
typed programs elaborate to higher-order logic proofs that are guaranteed to
check. The advantage of this approach over the first one is that it naturally sup-
ports classical reasoning principles. The first approach seems most naturally to
require constructive reasoning.

Whichever approach to the technical development of reflected evaluation
proofs succeeds, techniques for proof irrelevance will likely be required to slice
away proofs from the computational parts of programs [14].

5



approach auto strong mainline update unified comp. effects

automated yes no yes yes partial partial yes
VCs no yes yes partial no no yes
refinement no yes yes no no no yes
MLTT no yes no yes yes yes no
RSP1 no partial maybe yes yes yes partial
REP no yes maybe yes yes yes yes(?)
KeY partial yes yes yes good partial yes

Figure 1: Comparison of verification approaches

4 Comparison to Existing Approaches

I will now argue that the two languages described in the preceding Section
compare favorably with existing verification approaches, using these metrics:

automatic: How automatic is the approach? Must the programmer write
proofs, specifications, or other annotations, or can raw code be handled?

strength: Can arbitrary properties be specified and checked of arbitrary sys-
tems, or are the specifications or systems that can be handled restricted
in some way?

mainline languages: Does the approach apply to systems developed in main-
stream programming languages, or must special languages be used?

incremental update: How much work is required to re-establish specifications
after an incremental change?

unified language: Is there a single language and single set of tools for speci-
fication, implementation, and proof?

computational approach: Are the languages involved computational or math-
ematical/logical in character?

support for imperative features: Can the approach handle imperative fea-
tures? If so, how directly are they handled?

Figure 1 compares the following approaches with the languages proposed
above: fully or mostly automated approaches like model-checking and static
analysis, theorem-proving based on manually proving extracted VCs, program
development by refinement, and type theoretic approaches like Martin-Löf type
theory (MLTT in the Figure). The latter are, of course, the most closely related
to RSP1 and the reflected evaluation proofs (REP in the Figure). The KeY
system supports verification of JavaCard programs using Dynamic Logic [1, 4].
Let me provide some further explanation for the entries in the Figure.

Automated approaches cannot handle arbitrary properties of arbitrary sys-
tems. Specifications (e.g., temporal logic in model checking) are often more

6



logical than computational. The techniques do apply to mainstream program-
ming languages, and can handle effects. The VC approach has already been
discussed. Note that while it is in principle possible to apply the VC approach
to any programming language one likes, doing so for a new language typically
requires a lot of modeling work in the theorem prover. Refinement requires
manual application of refinement steps, which are outside the programming
language. The main drawback of the approach of Martin-Löf type theory is
that it cannot in any obvious way be extended to mainstream programming
languages with general recursion or effects. RSP1 goes some of the way towards
dealing with effects in a unified, computational way. The ideas there could
probably be incorporated into a mainstream functional programming language
like Ocaml. It does require manual creation of proofs, like the VC approach. I
do not consider it fully strong because of its limited ability to specify properties
of the heap. The reflected evaluation proofs approach has the same strengths as
RSP1, with the added potential (not yet realized) to specify properties of the
heap. Furthermore, reflected evaluation proofs support an even more computa-
tional approach than RSP1, since specifications are just assertions, whereas in
RSP1, they are term-indexed datatypes.

The KeY system, while based on a traditional verification paradigm (namely
Dynamic Logic), supports a much more viable approach to dispatching verifi-
cation conditions than is typical of the VC approach. In particular, program
fragments are retained in the modal operators of Dynamic Logic, and discharg-
ing verification condition requires a mix of symbolic simulation, state simplifi-
cation, and logical deduction. In this respect, it resembles work on Dynamic
Verification [19]. KeY also has some support for incrementally recovering parts
of proofs which are still applicable when code is modified. Proofs are separate
artifacts from programs, but the KeY tool is able to maintain a close connection
between proofs and programs. It remains to be seen how the tightly integrated
language-based approach I have advocated here compares in detail with an ap-
proach like KeY’s.

5 Conclusion

I have argued that traditional approaches based on manually proving extracted
verification conditions are unlikely ever to be widely adopted for verification, due
to the heavy burdens they place on developers. I propose that instead, language-
based approaches to program verification be developed, where correctness proofs
are intertwined with code, in a way that gives them the appearance of being
program data just like strings or booleans. Work in this direction is being
pursued by my group, based on the RSP1 language, and the still developing idea
of reflected evaluation proofs. The intention is that by making specificational
and verificational artifacts more computational and less (in the technical sense)
logical, program verification will become more usable for regular development.
Other projects working toward this vision include the Epigram project and the
ATS project [9, 22]. Language-based approaches will also be highlighted at

7



a (proposed) FLoC 2006 workshop entitled “Programming Languages meets
Program Verification” (PLPV), organized by Hongwei Xi and the author.

References

[1] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Men-
zel, W. Mostowski, A. Roth, S. Schlager, and P. Schmitt. The KeY tool.
Software and System Modeling, 4:32–54, 2005.

[2] Thorsten Altenkirch. Integrated verification in Type Theory. Lecture notes
for a course at ESSLLI 96, Prague, 1996. Available from the author’s
website.

[3] Joel Brandt. What a Mesh: Dependent Data Types for Correct Mesh
Manipulation Algorithms. Master’s thesis, Washington University in Saint
Louis, April 2005. Available from http://cl.cse.wustl.edu.

[4] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

[5] J. Harrison. Formal Verification of IA-64 Division Algorithms. In 13th In-
ternational Conference on Theorem Proving in Higher Order Logics, 2000.

[6] R. Klapper and A. Stump. Validated Proof-Producing Decision Proce-
dures. In C. Tinelli and S. Ranise, editors, 2nd International Workshop on
Pragmatics of Decision Procedures in Automated Reasoning, 2004.

[7] G. Klein and T. Nipkow. Verified Bytecode Verifiers. Theoretical Computer
Science, 298(3):583–626, 2003.

[8] C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa Tool for
Certification of JAVA/JAVACARD Programs Annotated in JML. Journal
of Logic and Algebraic Programming, 58(1-2):89–106, 2004.

[9] C. McBride and J. McKinna. The View from the Left. Journal of Functional
Programming, 14(1), 2004.

[10] S. McPeak and G. Necula. Data Structure Specifications via Local Equality
Axioms. In K. Etessami and S. Rajamani, editors, 17th International Con-
ference on Computer-Aided Verification, pages 476–490. Springer, 2005.

[11] J. Moore, T. Lynch, and M. Kaufmann. A Mechanically Checked Proof
of the Correctness of the Kernel of the AMD5k86 Floating-Point Division
Program. IEEE Transactions on Computers, 47(9), 1998.

[12] M. Musuvathi, D. Park, A. Chou, D. Engler, and D. Dill. CMC: A Prag-
matic Approach to Model Checking Real Code. In 5th Symposium on
Operating Systems Design and Implementation, December 2002.

[13] G. Norman and V. Shmatikov. Analysis of Probabilistic Contract Signing.
In In BCSFACS Formal Aspects of Security (FASec ’02), 2002.

8



[14] F. Pfenning. Intensionality, Extensionality, and Proof Irrelevance in Modal
Type Theory. In 16th IEEE Symposium on Logic in Computer Science.
IEEE Computer Society, 2001.

[15] Robert Pollack. Dependently Typed Records in Type Theory. Formal
Aspects of Computing, 13:386–402, 2002.

[16] H. Rueß N. Shankar, and M. Srivas. Modular Verification of SRT Division.
Formal Methods in System Design, 14(1), 1999.

[17] I. Shlyakhter, R. Seater, D. Jackson, M. Sridharan, and M. Taghdiri. De-
bugging Overconstrained Declarative Models Using Unsatisfiable Cores. In
18th IEEE International Conference on Automated Software Engineering,
2003. received best paper award.

[18] M. Velev and R. Bryant. Effective Use of Boolean Satisfiability Procedures
in the Formal Verification of Superscalar and VLIW Microprocessors. Jour-
nal of Symbolic Computation, 35(2):73–106, February 2003.

[19] C. Wang and D. Musser. Dynamic Verification of C++ Generic Algorithms.
IEEE Transactions on Software Engineering, 23(5):314–323, 1997.

[20] E. Westbrook and A. Stump. A Language-based Approach to Function-
ally Correct Imperative Programming. 10th ACM SIGPLAN International
Conference on Functional Programming, 2005.

[21] Y. Xie and A. Aiken. Scalable Error Detection using Boolean Satisfiabil-
ity. In M. Abadi, editor, Proceedings of the 32nd ACM Symposium on
Principles of Programming Languages, 2005.

[22] D. Zhu and H. Xi. Safe Programming with Pointers through Stateful Views.
In Proceedings of the 7th International Symposium on Practical Aspects of
Declarative Languages, pages 83–97. Springer, 2005.

9


