
Dependent Types, Theorem Proving, and

Applications for a Verifying Compiler

Yves Bertot and Laurent Théry

April 2005

1 Theorem proving and Program development

One approach to Prof. Hoare’s challenge is to view the development of verified
software from the perspective of interactive theorem provers. This idea is al-
ready commonly developed and many medium-scale software systems have been
developed and verified in this manner. Developments based on HOL, ACL2, or
PVS have already been described and advocated and our position stands on the
same line: most powerful (higher-order) theorem proving systems already con-
tain a programming language, programs can be developed and the correctness
of these programs can be specified and verified, they can then be compiled into
traditional executable code. In this sense, we already have a small scale example
of a verification aware programming language.

We propose to take advantage of the notion of “dependent types” to ensure
that this programming language combines powerful logical capabilities, reason-
able expressive power, and practical linkage between computational content and
logical annotations.

Almost all mathematic developments contain algorithms. This imposes that
all theorem proving tools should contain a programming language. The usual
approach is to restrict this programming language to make the verification of
algorithms more regular. The most common kind of restriction is to consider
a strongly typed side-effect free functional language, with restricted forms of
recursion to ensure that all computations terminate (often boiling down to a
language with algebraic data-types and a form of primitive recursion adapted to
these datatypes). In apparence, Apparently, this limitation on the programming
language hinders the possibility to study realistic efficient programs, but this
question can be circumvented to obtain the equivalent of full-fledged general
purpose programming language.

The annotation mechanism found in the Floyd-Hoare approach is one of
the best solutions to associate properties to programs and support mechanical
verification of these properties. In a functional language programming with
dependent types, this capability becomes naturally practical for functional pro-
gramming languages.

1



2 Extension with dependent types

In the wide family of theorem provers for higher-order logic, we have experi-
mented with provers based on type theory [4], where the distinguishing feature
is the use of dependent types and their possible interpretation as logical for-
mulae. This feature adds expressive power to the programming language being
studied inside the theorem prover. First, dependent types can be used to carry
the annotations usually found in programs in the Floyd-Hoare approach. Sec-
ond, the programs need not be total anymore, they can be partial because
dependent types can be used to restrict the way functions are supposed to be
used. Actually both points are the same: with dependent types we can assert
that some function is to be used only on data that satisfies some input spec-
ification and we can also assert that the output data satisfies some property
with respect to the input. In a sense, we consider that dependent types are the
equivalent in the functional programming world to the Floyd-Hoare triples in
the imperative programming world.

The treatement to partial functions is quite extensive. For instance, it is
possible to describe functions whose termination is undecidable in general, using
dependent types to express that their value is valid only when one is able to
prove that these functions do terminate and to give a logical description of the
domain of definition.

Translating the dependently typed programming language found in a type-
theory based theorem prover to a conventional programming language is a more
complex problem than for the recursive functional programming language found
in other systems but it can be performed, in a way that the computations that
are relevant to the logical parts are discarded and only the relevant computations
for an efficient construction of the result are present in the result program. This
translation process, akin to separation between compile-time optimization run-
time computation is usually known as extraction.

State-based programs from the conventional imperative programming world
can also be described using monadic approaches (a big word to state that all
functions take an extra argument representing the state and return a tuple as
argument, where an extra component represents the modified state). Excep-
tions and other programming constructs can probably also be accomodated.
The encoding of non-functional programming constructs needs to be taken into
account in the extraction mechanism, so that efficient state-based programs are
not translated to inefficient functional programming languages. This improve-
ment of extraction is not done today, but there is no doubt it could be done
satisfactorily in the foreseeable future.

The direct integration of dependent types into existing programming lan-
guages has also been studied for about 10 years. Notable results are exposed
in [11] where the language ML is extended with a restricted form of dependent
types, so that the conditions that need to be satisfied for type verification fall
in the category of problems satisfied by some form of constraint programming.
Another notable experiment is described in [1], where a subset of the Haskell
language is extended with dependent types and verification relies on existence of

2



proofs, which are simply other collections of well-typed programs. In both cases,
the absence of restriction on recursion imply that well-typed programs may ex-
hibit a behavior that is not foreseen by their types, but dependent types make
it possible to perform more accurate verification of the correctness of programs.

3 Example applications

In our team, we worked on a variety of examples, drawn from a variety of
computer science domains, and often in collaboration with specialist from the
addressed fields.

• Computer algebra: Buchberger’s algorithm to compute Gröbner bases [9],

• Decision procedures: St̊almarck’s algorithm for propositional logic [7],
Presburger’s procedure.

• Computer arithmetics: libraries to describe correct rounding in floating
points, algorithms on floating point expansions (based on IEEE754 opera-
tions) [6], efficient square root computation (taken from the GMP library)
[5].

• Programming language technology: Java byte-code verifier [2], compiler
for a non-trivial fragment of C.

• Computational geometry: convex-hulls [8].

While many of these algorithms have been described in a purely functional
language, we studied state-based encodings in a variety of manners, through
abstract data-types or encodings of imperative programming languages with
Floyd-Hoare like assertions. In some cases, this made it possible to prove prop-
erties about memory usage. Most of these program studies were supported by
the development of important bodies of mathematical theory concerning for
instance polynomials, plane geometry, real or rational numbers, programming
language semantics, lattice theory.

3.1 Detailed examples

In conventional functional programming, we write a : b to express that the
value a has the type b. Types are constants like int or bool, sometimes pa-
rameterized constants like listτ , where τ is itself a type, and function types,
written τ → τ ′. The use of parameterized constants is a precursor of using
dependent types: for example the function that takes a list and returns its first
element has the type listτ → τ , so the type of the result depends on the type
of the input. So the extension is quite simple to express: with dependent types,
parameterized type constants may be indexed by arbitrary values and the type
of a function’s result will be allowed to depend on the type of that function’s
argument. We need a new notation to represent this. We will use ∀x : τ, T x

3



to represent the type of functions that take arguments in type τ and return a
value in a type T x that varies when the input x varies.

Meaningful dependent types and values could have the following form:

• vect x, the vectors of integers of length x, the value vector_nil could
be a value in the type vect 0 and the value
vector_app : ∀ n m:int, vect n * vect m → vect (n+m)
could be a dependently typed function that takes two vectors and builds
an new vector by concatenation.

• lt y x, the witnesses (proofs) that y < x, The functions
lt_1: ∀ x:int, lt x (x+1)
and
lt_m : ∀ x:int, lt x m → lt x (m+1)
could be used to construct these witnesses. The type family lt is not a
real type of values, but rather a type of proofs. Types of this kind are
mostly understood as predicates.

• Given an arbitrary predicate P on the type τ , the {y:τ | P y} would be
a special notation to represent the elements of τ that satisfy the predicate
P . Actually the elements of this type are the pair of a value y in τ and
an element in the type P y.

• sorted a predicate on lists of integers,

• permutation a 2-place predicate on lists of integers,

• sorted_0 : sorted [], sorted_1 : ∀ x, sorted [x], and
sorted_2 : forall x y l, lt x y → sorted (y::l) →

sorted (x::y::l),
theorems that can be used to build proofs that a list is sorted1

• sorted_inv1 : forall x y l, sorted (x::y::l) → lt x y,
sorted_inv2 : forall x y l, sorted (x::l) → sorted l
theorems that can be used to exploit the fact that a list is sorted.

• {l : list int | sorted l} could be the type of sorted list,

• forall x:list int,
{y : list int | sorted y /\ permutation x l}

could be the type of a sorting function.

• mk_sorted_value : ∀ l x, sorted x →
permutation l x → {y:list y | sorted y /\ permutation l y}
could be the type of the function that takes a reference list as first argu-
ment and injects a list and proofs that this list is sorted and a permutation
of the reference in the type of sorted permutations of the reference.

1the notation a::l represnts the list whose first element and tail are a and l.

4



• insert : ∀ x l, sorted l →
{l’:list int | sorted l’ /\ permutation (x::l) l’}
could be a function that inserts an element in a sorted list, where the type
ensures that the result list is sorted and contains the elements of the initial
list plus the inserted element.

Using dependent types also imposes that one adapts the constructs in the pro-
gramming language. For instance, the different values returned for different pat-
terns in a pattern-matching construct may have different types and the pattern-
matching construct is adapted to let the programmer indicate how the return
type varies depending on the matched pattern. The programming construct
takes the following form:

match t_1 return T t_1 with
p_1 => e_1

| p_2 => e_2
end

This expression is only well-typed if ei has the type pi for the two possible
values of i. The text appearing after return serves as an annotation of the
functional program. For instance, a sorting algorithm could have the following
formulation:

let rec sort (l:list int) :
{l’:list int | sorted l’ /\ permutation l l’} :=
match l return sorted l /\ permutation l l’ with
[] => mk_sorted_value [] sorted0 (permutation_refl [])

| x::l1 => let (l2,hyp_sorted_l2, hyp_perm_l1_l2) := sort l1 in
let (l’, hyp_sorted_l’, hyp_perm_x_cons_l2_l’) :=

insert x l2 hyp_sorted_l2 in
mk_sorted_value l’ hyp_sorted_l2
(perm_thm x l1 l2 l’ hyp_perm_l1_l2 hyp_perm_x_cons_l2_l’)

This program contains computation information: the sort algorithm decompose
the argument list, sorts recursively the tail and then inserts the first element.
It also contains logical information. It assumes that the constants permuta-
tion_refl and perm_thm have the types

• permutation_refl : ∀ x, permutation x x (in english, every list is a
permutation of itself),

• perm_thm : ∀ x l1 l2 l’, permutation l1 l2 →
permutation (x::l2) l’ → permutation (x::l1) l’

(in english, if l2 is a permutation of l1 then any permutation of (x::l2)
is a permutation of (x::l1)).

Under these assumption, the logical information given in the algorithm formula-
tion shows how to combine hypotheses given by auxiliary functions and recursive

5



calls to construct proofs that the result list is sorted and a permutation of the
input.

This formulation of the algorithm contains both the description of what
needs to be done to compute a sorted list and the justifications for these op-
eration. If this is to be used as input to a compiler, one needs to get rid of
all computations that only relevant for the proofs. This operation is called ex-
traction and it actually produces a new formulation of the algorithm where all
logical information is discarded:

let rec sort (l:list int) : list int :=
match l with
[] => []

| (x::l1) => let l2 := sort l1 in
let l’ := insert x l1 in
l’

end

The corresponding program is close to a regular program in a functional pro-
gramming language and can be further compiled using a conventional compiler.

It is a matter of taste to decide how much logical information should appear
inside the algorithm formulation. A conservative approach is to first describe the
algorithm without using dependent types and then to prove its correction. The
approach outlined in this example was to show that the logical information can
appear in selected places in the algorithm formulation, using auxiliary theorems
to condense all reasoning steps. When the function to be considered are partial
and the appartenance to the domain of definition is undecidable, there may be
no other possibilities than mixing logical information inside the program.

4 Research challenges

4.1 Libraries

The programming language supported by a verifying compiler is only likely to be
adopted if it provides enough libraries so that programmers don’t have to redo
everything from scratch. Today, the programming languages for which complete
program verification is possible suffer from the lack of companion libraries.

The work of adding libraries to a verifiable programming language can be
done at two levels. The first level consists in weak specification and implemen-
tation, but no verification of the library itself. By weak specification, we mean
that most of the characteristics of input and output for various procedures are
left untold, but the specifications are enough to avoid most practical errors.
This level is meaningful for libraries whose content is difficult to describe math-
ematically (think of the interface to windowing systems or networking tools, for
instance).

In the second level for adding libraries to a verifiable programming language,
the verifiable compiler itself is used to compile the libraries and ensure that they

6



are correct. In this case, meaningful specifications of the procedures should be
provided (for instance, the input to an integer square-root function should be
a positive integer and the result is specified as the largest integer value whose
square is smaller than the input).

Libraries of reusable components verified at the second level are being devel-
oped today, but true reusability has not been effectively assessed. Cases where
a new software system is verified and relies on previously verified software units
are rare. Intermediate objectives should be set for a variety of domains. In our
case, we believe that libraries for continuous mathematics should be developed,
to make it possible to verify programs in domains that concern the measure and
control of physical artifacts. More and more software is developed to control
physical devices, in avionics, railroads, or automobiles. Some of this software
may have a direct impact on human life, like for instance software used in med-
ical robotics. We believe that this software should be verified with the utmost
precision and should rely on libraries that are verified with the best available
technology.

4.2 Algorithmic structures and programming constructs

In our study of a wide variety of algorithms, we have found that there are several
kind of algorithmic structures: simple loops, structural recursion, well-founded
recursion, lazy recursion on potentially infinite data-structures. We know tech-
niques to encode most of these algorithmic structures inside the restricted lan-
guage of theorem proving systems. However, some of these techniques are es-
pecially difficult to implement and sometimes require intensive work from an
expert to achieve an encoding that is amenable both to compilation (respecting
the intended efficiency) and to formal verification. We believe the required level
of expertise can also be lowered by providing libraries of proving tools that are
adapted to these algorithmic structures. For instance, we are currently working
on lazy evaluation on infinite data-structures [3].

In general, we believe that each specific domain requires a specific body of
mathematical background and programming methodologies. While an expert
can encode most programs in a theorem prover’s language by coming back to
first principles, it is relevant to capitalize the expertise in a library that is
adapted and a programming style that fits with this library. In practice, this
means that a specialized programming language actually is being defined. In
this sense, verifying compilers are already provided in today’s world, in the
form of specialized programming languages with a well known formal semantics.
Examples that come to the authors’ mind (because of geographical proximity)
are Esterel and Scade.

4.3 Software reuse and collaborative work

Specifying the requirements and guarantees for a software component should ob-
viously contribute to better re-usability of compiled code and promote contract-
based collaboration on software development. However, our direct experience

7



has shown that some problems need to be overcome to make software verification
more productive.

The first point is that the specification of a software fragment should be
interchangeable (for the same algorithmic content). Some characteristics of a
given algorithm are usually left untold when writing its specification to make
it easier to replace this algorithm with another. However, some untold charac-
teristics may have a crucial importance for some larger programs. For instance,
sorting algorithms work quite well if the relation with respect to which sorting
occurs is not anti-symmetric. However, some algorithms are better than others
(even for the same algorithmic complexity), because they may or may not pro-
vide the guarantee that an already sorted input will be left unchanged. This
shows that a piece of software may have to be recompiled with respect to a
modified specification. Verification re-use should be optimized in this case.

A second point concerns maintainability. When new improvements to the
algorithms are designed, there is no certainty that verifying the improvement
will incur only a marginal cost of verification. Systematic approaches to re-use
the proof-work that was performed for a previous version of an algorithm need
to be proposed.

5 The wider perspective

The challenge of providing a verifying compiler implies the challenge of design-
ing a new programming language, because verification is more likely to succeed
if the semantics of the language are suited for the purpose. Previous successful
languages also came with a new field of application: C for system program-
ming, Java for internet applications, etc. It is sensible that a new important
concept like verified software should justify investing in a new language. Past
experiments where legacy languages were instrumented to support verification
did clarify the situation, but the post-hoc verification of all legacy software is
probably out of reach, and future programs should be written in a language that
encourages programmers to insert meaningful logical information.

Software formal verification is gradually accepted in the industry today. If
a verifying compiler has to become widely accepted, it has to prove its own
relevance by bootstrapping. Verifying the compiler itself is also a keypoint for
acceptance in the production of safety critical software. In this sense, it is a
suitable landmark to provide a formally verified compiler. We have also worked
on this topic and we believe this landmark can be reached in a few years.

Another general question is whether one should impose complete verification,
as often performed in the theorem proving community, or be content with only
partial verification of well-known kinds of properties, hoping to stay in a de-
cidable logic. For instance, array bounds correctness problems are often solved
easily with decision procedures for Presburger’s arithmetic, and many programs
will be verified completely automatically when they do not rely on advanced
number theory. This characteristic will be an important one for the acceptance
of this approach in a general setting. But seemingly simple programs may some-

8



times fall outside the area of decidable (or tractable) logic. In the example we
studied in [10], array bound correctness actually relies on a complex theorem,
stating that there always exists a prime number between n and 2n. Algorithms
that cannot be verified automatically should always be programmable in the
language. Fully automatic and partial verification must be accomodated, but it
should rather be at the choice of the programmer (for instance by choosing to
admit unproven facts) than by restricting the logic.

References

[1] Lennart Augustsson. Cayenne - a language with dependent types. In In-
ternational Conference on Functional Programming, pages 239–250, 1998.

[2] Yves Bertot. Formalizing a jvml verifier for initialization in a theorem
prover. In Computer Aided Verification (CAV’2001), volume 2102 of LNCS,
pages 14–24. Springer-Verlag, 2001.

[3] Yves Bertot. Filters on coinductive streams, an application to eratosthenes’
sieve. In Pawe l Urzyczyn, editor, Typed Lambda Calculi and Applications,
TLCA 2005, pages 102–115. Springer-Verlag, 2005.

[4] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development, Coq’Art:the Calculus of Inductive Constructions.
Springer-Verlag, 2004.

[5] Yves Bertot, Nicolas Magaud, and Paul Zimmermann. A proof of GMP
square root. Journal of Automated Reasoning, 22(3–4):225–252, 2002.

[6] Marc Daumas, Laurence Rideau, and Laurent Théry. A generic library
of floating-point numbers and its application to exact computing. In
Richard J. Boulton and Paul B. Jackson, editors, Theorem Proving in
Higher Order Logics (TPHOLs 2001), volume 2152 of LNCS, pages 169–
184. Springer-Verlag, 2001.

[7] Pierre Letouzey and Laurent Théry. Formalizing St̊almarck’s algorithm in
Coq. In J. Harrison and M. Aagaard, editors, Theorem Proving in Higher
Order Logics: 13th International Conference, TPHOLs 2000, volume 1869
of Lecture Notes in Computer Science, pages 387–404. Springer-Verlag,
2000.

[8] David Pichardie and Yves Bertot. Formalizing convex hull algorithms.
In Richard J. Boulton and Paul B. Jackson, editors, Theorem Proving in
Higher Order Logics (TPHOLs 2001), volume 2152 of LNCS, pages 346–
361. Springer-Verlag, 2001.

[9] Laurent Théry. A machine-checked implementation of Buchberger’s algo-
rithm. Journal of Automated Reasoning, 26:107–137, 2001.

9



[10] Laurent Théry. Proving pearl: Knuth’s algorithm for prime numbers. In
David Basin and Burkhart Wolff, editors, Theorem Proving in Higher Order
Logics (TPHOLs 2003), volume 2758 of LNCS. Springer-Verlag, 2003.

[11] Howgwei Xi and Frank Pfenning. Dependent types in practical program-
ming. In Conference Record of POPL 99: The 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San Anto-
nio, Texas, pages 214–227, New York, NY, 1999.

10


