
Whither Veri�ed Software?

Ramesh Bharadwaj

Center for High Assurance Computer Systems
Naval Research Laboratory

Washington DC 20375 USA
ramesh@itd.nrl.navy.mil

Abstract. This position paper addresses, and attempts to propose solu-
tions for, critical issues in software engineering that need to be resolved
before the Veri�ed Software grand challenge as proposed by Professor
Tony Hoare can be usefully exploited in industry to increase the assur-
ance of software intensive systems.

Introduction

The following assumptions about programs and their correctness (which I refer
to in the sequel as \assumptions") are implicit in the problem description of
the Verifying Compiler Grand Challenge: 1) Associated with each program are
types, assertions, and other annotations1 that are readily available. 2) They are
unassailable, inviolable, and invariant. 3) Their correctness is both necessary
and su�cient for the correctness of the programs they annotate. In this paper,
I argue that for programs that are intended to solve real-world problems, the
subject of my research for more than �fteen years, none of these assumptions
necessarily holds. I proceed to explain how this problem may be addressed, and
conclude with what I think are more realistic expectations on the impact of the
grand challenge problem and its solutions on real-world software development
projects.

Problem Statement

For programs whose behavior is easily speci�ed as mathematical functions, it is
conceivable that the assumptions are valid. An example of such a program is
one that implements the 4-coloring algorithm for planar graphs. If we assume
that program annotations can characterize the function being computed by the
program, the proof of its correctness is probably derivable from the proof of
correctness of the 4-coloring problem. However, even for such programs, the cor-
rectness of its annotations is often predicated upon extraneous factors in the
program's execution environment, such as the word length of the processor, the
size of the address space, or the amount of available memory. This is because
program code is generically written for an abstract machine; the program may

1 I shall loosely use the term \annotations" to refer to this redundant information.



execute on a real machine that may not correctly implement some of these ab-
stractions. In such an event, the program will fail in unexpected ways. Also,
program annotations may never be able to capture quantitative aspects such
as the space and time requirements of the program. Such properties are central
to the program's \correctness" since correctness often entails user expectations
about the time and space requirements for successful execution on speci�c data
sets. Even if we assume that it is feasible to precisely characterize such ma-
chine requirements and non-functional properties, it is not clear to me how their
correctness could possibly be established by a verifying compiler.

The situation becomes hopeless for programs the correctness of whose anno-
tations depends upon extraneous factors. This is the case even when the speci-
�cation of a program is precisely characterized as a mathematical function; the
problem is, it is often impossible to ascertain with 100% accuracy what this
function is. My favorite example is sales tax computation. In a bygone era, when
I used to write programs for a living, I was under the naive impression that
the precise nature of mathematical logic makes the problem of program correct-
ness a mere exercise in calculation. Imagine my surprise when, in response to
my Management's decision to start charging for certain transactions, I had my
�rst brush with sales tax laws. In the United States, for businesses that conduct
transactions with customers in more than one state, correctly �guring out the
sales tax for a speci�c transaction can be a daunting challenge [Tur]. Sales tax
collection falls within the purview of more than 7,500 state and local administra-
tions, each with its own speci�c set of rules and regulations. A business located
in the United States is required to comply with all the regulations in e�ect at
the location of each of its customers. Clearly, computing the correct sales tax is
crucial to the very survival of the business.

Consider a program that is required to compute the sales tax associated with
a sale: the correct tax rate varies with the location of the sale (which may not
necessarily be the location of the computer on which the program is run), the
sales tax to be levied at that location, and all applicable legislation(s) pertaining
to the transaction2. For example, California law provides for the exemption of
sales tax on food products subject to the following restrictions:

Sales of food for human consumption are generally exempt from tax un-
less sold in a heated condition (except hot bakery items or hot beverages,
such as co�ee, sold for a separate price), served as meals, consumed at
or on the seller's facilities, ordinarily sold for consumption on or near
the seller's parking facility, or sold for consumption where there is an
admission charge.

It is inconceivable that the above conditions and restrictions could be speci�ed
precisely in the form of program assertions. For example, how does one formalize
notions such as \except hot bakery items" or \near the seller's parking facility?"

2 An interesting discussion on Sales and Use taxes for transactions carried out via the
Internet in the United States is found at [Tur].



How can one ascertain that the formulations are correct? How will a program-
mer devise algorithms for their computation? How is the correctness of these
algorithms established? Automatically?

Requirements Speci�cations

My exposure to programs that solve real-world problems led me to the world of
software engineering, where one addresses the problem of determining customer
needs and their precise characterization in the form of a speci�cation. By speci-

�cation I mean a description of the required behavior of a system, sub-system, or
component. In general, a speci�cation describes what is being computed, omit-
ting details of how this is achieved. Two important goals are to make the spec-
i�cation of a system understandable to the users of the system (to enable its
validation) and making it precise, i.e., avoiding overspeci�cation (also known
implementation bias) as well as underspeci�cation3.

This is a tall order, since the two goals are often in con
ict: On the one hand,
the speci�cation must be understandable to users; therefore, its vocabulary must
only include user-visible (or environmental) quantities and exclude implementa-
tion variables. On the other hand, since it is also a \build-to" document, i.e., a
speci�cation of system behavior, its vocabulary must be linked to implementa-
tion detail. One solution to this conundrum is to specify a mapping between the
two vocabularies (the so-called re�nement mapping). However, providing this
is infeasible in practice and I advocate instead an approach [BH99,BH00,HB00]
where the implementation vocabulary includes the user vocabulary, i.e., environ-
mental quantities associated with the externally visible behavior of the system.

This approach has two limitations: it does not address the problem of legacy
systems; it also unnecessarily constrains design choices. A more general solution
to this problem (also known as the \traceability problem" in requirements en-
gineering) remains a daunting challenge. The set of problems whose solutions
remain elusive are: 1) Reverse Engineering: Given a legacy implementation, how
can one automatically extract a user-understandable description? 2) System ver-
i�cation: Given a user-visible speci�cation of system behavior, how does one en-
sure that an implementation satis�es the speci�cation? 3) Re�nement Mapping:
How are relations between user-visible and system-speci�c vocabularies estab-
lished? 4) Requirements Traceability: Given an instance of user-visible behavior,
which components of the implementation are responsible for implementing this
behavior? 5) Trojans and Dead Code: Given a requirements speci�cation, which
components, sub-systems, or lines of code in the system are irrelevant to the
correct operation of the system?

3 In other words, every implementation that satis�es the speci�cation must be accept-
able to the customer and the speci�cation must describe every acceptable implemen-
tation.



Domain Models

I have also explored another area in software engineering where precise nota-
tion and mathematical analysis prove to be very useful. This is in requirements

engineering, i.e., the processes and methods employed by users and system de-
velopers to gain an understanding of the problem being solved in building the
system. This is complementary to the speci�cation based approach above and
can be used in addition to or instead of requirements speci�cations. In contrast
to the conventional approach, which can be costly and time consuming, require-
ments engineering advocates the creation and analysis of \domain models" just
for the purpose of answering speci�c questions about the domain [Bha02c]. The
e�ort involved in creating such models is minimal and is comparable to the ef-
fort required to peruse prose requirements to �nd answers to the same questions
(which often turn out to be incorrect). Using domain models, not only is there
the advantage of arriving at the right answer with mathematical certainty, but
as an added bonus, they uncover anomalies and raise issues about the domain
that informal approaches do not. Research challenges in this area include the au-
tomatic transformation of domain models into requirements speci�cations, their
veri�cation, validation, and maintenance. Other challenges are related to the
challenges I enumerate above pertaining to Requirements Speci�cations.

Architectural Patterns

Today's systems are built using highly reusable software or hardware components
using the so called \system of systems" approach. Systems are typically built
by integration of highly disparate components that interact with one another
via a middleware infrastructure [YMB05]. Some of these components may be
Commercial O� The Shelf (COTS) or standard IP hardware components which
may have been developed without taking into account the requirements of the
system in which they are deployed. Further, during the design of a component,
consideration of non-functional requirements such as reliability may complicate
the design. Therefore, satisfying certain requirements of the system, such as
fault-tolerance, is better done at later stages of the development cycle during
hardware/software integration. Since the sub-components are not easily mod-
i�ed during system integration, the only alternative is to implement these re-
quirements by appropriately con�guring the components so as to alter their
behavior at run-time. Architectural patterns are a means to rapidly develop
such mechanisms by reusing existing solutions to \similar" requirements. Using
such patterns, the system integrator can quickly develop architectural models by
assembling existing patterns to meet speci�c dependability requirements of an
application. The research challenges include the automatic translation of these
models into e�cient runnable code, automated deployment of code on a secure,
perhaps distributed platform, and initiation of repair actions in the case of hard-
ware, network, or software failures.

We have conducted an initial study in formal veri�cation of architectural
patterns in support of dependable distributed applications [JB05]. This initial



study has shown that it is relatively straightforward to associate safety proper-
ties with generic modules that implement such architectural patterns. Proofs of
these properties were carried out using the standard induction technique [BS00]
using an assumption/guarantee proof system for compositional reasoning simi-
lar to [XB03]. Although we have automated the proofs of safety properties for
concrete instances of an architectural pattern, an open problem is to develop au-
tomatic proof strategies for the generic case. Also required is a polymorphic type
system and generalized proof methodologies in support of architectural frame-

works, which are the generators of architectural patterns.

Dependable Middleware

A goal of the NRL dependable middleware project [Bha02a,Bha02b,Bha03,Bha04]
is to develop infrastructure to support secure deployment, coordination, secu-
rity, and encapsulation mechanisms for untrusted software COTS components.
With such middleware, it should be feasible to compose and deploy untrusted
components in mission-critical applications, while guaranteeing the compliance
of the application with performance-critical properties. Such middleware is also
the enabler in the creation of service-oriented architectures (SOAs), where orga-
nizations can delegate to other organizations the responsibility of implementing,
deploying, and maintaining certain functions constituting a mission-critical ap-
plication. For instance, most businesses routinely use third-party vendors for
carrying out credit card transactions. Getting back to the problem of sales tax
computation, a business may delegate to a third party responsibility (and as-
sociated legal liability) for computing this function within an application. The
correctness of such an application is obviously predicated upon the correctness of
these outsourced functions. Therefore, to ensure compliance, organizations must
enter into Service Level Agreements (SLAs) that are legally binding contracts
similar to design contracts in object oriented programming. Automatic discovery
of services relevant to an application's requirements, protocols for automatically
drawing up service level agreements, ensuring the compliance of services provided
by vendors with the SLAs, dynamic composition of available services to meet
the requirements of a speci�c mission-critical application, and verifying that the
composed application meets its performance-critical properties, are some of the
multitude of challenges posed by application development for service-oriented
architectures.

Conclusion

In this position paper, I have made an attempt to put into perspective the
daunting challenges associated with Veri�ed Software. In my opinion, the Veri-
�ed Software grand challenge is merely a good start for developing methods and
tools to solve the more challenging problems of the software development indus-
try. It is hoped that the attendees of the IFIP Working Conference on Veri�ed
Software: Theories, Tools, Experiments, will give thought to these additional



challenges, and propose a road map for tackling some of these more pressing
problems. I think the Computer Science community has abdicated responsibil-
ity for improving the state-of-practice of software development many years ago.
It is my earnest hope that this forum will serve as a springboard to invigorate the
community into making genuine research contributions that have the potential
to truly transform the software development process into an engineering activity.
In other words, to put the \engineering" back into software engineering.

References

[BH99] R. Bharadwaj and C. Heitmeyer. Hardware/software co-design and co-
validation using the SCR method. In Proceedings of the IEEE International
High Level Design Validation and Test Workshop (HLDVT'99), San Diego,
CA, November 1999.

[BH00] R. Bharadwaj and C. Heitmeyer. Developing high assurance avionics systems
with the SCR requirements methods. In Proc. 19 th IEEE Digital Avionics
Systems Conference, Philadelphia, PA, October 2000.

[Bha02a] R. Bharadwaj. SINS: a middleware for autonomous agents and secure code
mobility. In Proc. Second International Workshop on Security of Mobile
Multi-Agent Systems (SEMAS-02), Bologna, Italy, July 2002.

[Bha02b] R. Bharadwaj. Veri�able middleware for secure agent interoperability. In
Proc. Second Goddard IEEE Workshop on Formal Approaches to Agent-Based
Systems, Greenbelt, MD, October 2002.

[Bha02c] Ramesh Bharadwaj. Formal analysis of domain models. In Proc. Interna-
tional Workshop on Requirements for High Assurance Systems (RHAS'02),
Essen, Germany, September 2002.

[Bha03] R. Bharadwaj. A framework for the formal analysis of multi-agent systems.
In Proc. Formal Approaches to Multi-Agent Systems, Warsaw, Poland, April
2003.

[Bha04] R. Bharadwaj. Development of dependable component-based applications. In
In Proc. First International Symposium on Leveraging Applications of Formal
Methods (ISoLA 2004), LNCS. Springer, 2004.

[BS00] R. Bharadwaj and S. Sims. Salsa: Combining constraint solvers with BDDs
for automatic invariant checking. In Proc. 6th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages
378{394, Berlin, March 2000.

[HB00] C. Heitmeyer and R. Bharadwaj. Applying the SCR requirements method to
the Light Control Case Study. JUCS, 6(7), 2000.

[JB05] R. L. Je�ords and R. Bharadwaj. Formal veri�cation of architectural patterns
in support of dependable distributed systems. In Submitted., 2005.

[Tur] TurboTax. FAQs on Sales and Use Taxes and the Internet. URL-
http://www.turbotax.com/articles/FAQonSalesandUseTaxesandtheInternet.html.

[XB03] Fei Xie and James C. Browne. Veri�ed systems by composition from veri�ed
components. In Paola Inverardi, editor, Proc. Joint 9th Eur. Softw. Eng.
Conf. (ESEC) and 11th SIGSOFT Symp. on Foundations of Softw. Eng.
(FSE-11), pages 277{286, Helsinki,Finland, September 2003.

[YMB05] Stephen S. Yau, Supratik Mukhopadhyay, and Ramesh Bharadwaj. Speci�-
cation, analysis, and implementation of architectural patterns for dependable
software systems. In Proc. 10th IEEE Int'l Workshop on Object-Oriented
Real-Time Dependable Systems (WORDS 2005), Sedona,AZ, February 2005.


