
On Constructing Large Computerized Systems
(a position paper)

Jean-Raymond Abrial

ETHZ Zurich, Switzerlandjabrial@inf.ethz.ch

The subject mentioned in the title of this short article does not seem, at first glance, to
be a genuine research subject. Although there are, from time to time, some famous break-
downs of large computerized systems (as, for instance, recently at SBB in Zurich), it seems
nevertheless that these systems are working nowadays in a satisfactory fashion. As a conse-
quence, their construction process must have been mastered otherwise such disasters would
have occurred more frequently. This was clearly the case at the beginning of last century
with an emerging technology such as avionics. There were lots of crashes due to the fact
that people did not know how to construct good airplanes. The main reason for this was
that they did not understood yet the theory of flight mechanics, which was in its infancy.

In our case, however, the situation is a bit different from that of early avionics in that
there is no clear theory yet related to large computerized systems. The most obvious in-
dication supporting this fact is that, most of the time, experts cannot clearly explain why
such systems indeed work correctly. When a serious breakdown occurs, the corresponding
superficial reason is normally found after some time (not always however), and it is usually
repaired in a very ad-hoc fashion. But people are never sure that another breakdown will
not occur some time later, precisely because they do not know the more profound reason
for that earlier breakdown. It is my belief that such a state of the art is not satisfactory.

From almost the beginning of Informatics, the main tools used to develop computer sys-
tems were a High Level Programming Language and a corresponding Compiler. There has
been many of them (far too many in fact) always proposing new features whose pretensions
are to eventually solve the problem of constructing better programs than the previous gen-
eration of High Level Programming Languages and Compilers did. One can even regularly
see in the literature the term “next generation of programming languages” being used. Un-
fortunately, it does not seem to solve the problem since, over the years, the famous software
crisis is still with us.

An interesting research is then to investigate whether there could exist some other intel-
lectual means and tools that could be used instead of High Level Programming Languages
and Compilers. It does not mean of course that we believe that we can replace final com-
puter programs by something else. But, we would like to investigate whether we could
invent some other ways to obtain such final programs.

When High Level Programming Languages were invented in the sixties (i.e. Algol), the
idea was to make abstract programming patterns such as conditionals, loops, procedure
calls, and the like be first class citizens in the programming methodology. In the more
restricted realm of Assembly Code, such programming patterns did not exist explicitly but
were all implemented by means of a single feature, namely the conditionalgoto instruction.
The High Level Programming Language was then an abstraction of the more concrete
Assembly Code. And the Compiler was the tool that allows us to move from this abstraction
to a concrete implementation.

An interesting statistics that can be obtained from high level source programs is the ratio
of the number of lines of code devoted to pure algorithms over the total number of lines of
code excluding comments and the like. Of course, the figures differ from one application to
the other but it is usually far less than 1/2. This means that such abstract relational features
as components, classes, methods, inheritance, visibility, assertions and the like describing



the objects, their properties, and their relationships are becoming far more important than
pure algorithmic features such as conditionals, loops, and more generally computations.
It is my belief that such abstract relational features are not well handled in a High Level
Programming Languages, whereas pure algorithmic calculations are in my opinion still
well handled in such languages.

In other engineering disciplines (i.e. mechanical construction) people do not hesitate to
use languages when they are clearly needed and other means when they are not needed.
For instance, they use the languageMathematica to define the formal computations related
to their usage of the Calculus. But they do not use languages to describe the complex
relationships between the components of their future system, their properties, their links,
etc. In fact they store the various components of their product in one form or another and
express the relationships that hold between them. We can consider that they thus build a
Database of their future system. The engineering process is supported by the contents of
this Database, its modification, and the tools that are disposed around it.

In our discipline, there is a frequent confusion between the two terms "assertion" and
specification", even if both of them are written using a mathematical notation. An asser-
tion, is alocal predicatethat must always be true at some point in theexecution of a pro-
gram: it can be either checked dynamically while the program is running or better statically
proved. But in no ways can such assertions represent the specifications of a large comput-
erized system. For the simple reason that the specifications of a large computerized system
essentially consist in the definition of a number ofglobal propertiesby which it will be
possible to state that the final system comprising software and external equipment (includ-
ing users) works in a correct fashion. Clearly, when writing such properties the software
part of the computerized system does not exist yet and even sometimes also the external
equipment. In fact, such global properties are not associated with specific pieces of code
in the final software, they are rather supposed to be globally maintained by the software
in question together with its environment, which, most of the time, are both supposed to
run for ever. Moreover, the specifications, as just described, are the point of departure of
thedesignwhich has also to be defined first globally to end up eventually,by architectural
decomposition, in some more local properties: the assertions then appear to correspond
to thefinal stageof a long design process. It is quite clear that High Level Programming
Languages (event “modern” ones) are not at all suited to be the place for writing such
specifications.

What is wrong is to have the semantics of the High Level Programming Language being
the medium defining the properties of the offered features. This is far more easily handled
and modifiable as the invariant properties of aSystem Construction Database. It might still
be useful to have some pretty printing of the contents of the Database. This would resem-
ble a high level program but would be produced as an additional output of the construction
process rather than as its input. In first approximation, the contents of the System Construc-
tion Data Base is made of thevarious componentsof the system in construction together
with theirrelationships. These components are surrounded by a number oftoolsthat can be
used todevelopthem. The System Construction Database should not be confused however
with what High Level Programming Language technology calls a “library”. In fact, it is
far more general as explained below. The System Construction Database approach offers
quite a number of advantages over High Level Programming Languages. Here are a few of
them:

1. The System Construction Database can be used not only to store future software com-
ponents but also, more importantly, their variousabstract, and later refined, mathematical
models. And here the tools that replace the compiler and even the computer executing the
final program are aproof obligation generatorand aprover. Specification, and design,
and corresponding tools, are put together with implementation and corresponding tools.
In this respect, the System Construction Database contains the on-going design history of
the software construction. It is important to note that the specification of a large system

2



is not a monolithic text but rather a succession of more and more precise mathematical
models taking account gradually of the requirements of the future system. High Level Pro-
gramming Languages are not at all appropriate to handle this task: they suffer from their
initial purpose, namely that of instructing a computer on the way to perform its computa-
tions. Specifications and design have nothing to do with instructing a computer, they rather
record the thoughts and reasoning of the engineers.

2. The System Construction Database approach will also induce a rather more appropriate
way of elaborating the final product than that given by the usage of a High Level Program-
ming Languages and Compilers. Unless it is very small, you shall never write a program
and subsequently submit it to the compiler. This sequential approach to construction will
be replaced by a more reactive approach, which corresponds to the way engineers work.
You rather interact with the Database by entering modeling elements, their properties, and
their relationships. Such an interaction is permanently supported in the background by
tools working in adifferential fashionwithout being explicitly even invoked by the user.

3. The System Construction Database approach will also allow us to store and update com-
ponents which can be quite different in nature from computer programs, namely models
of pieces of equipments which might interact with the future software components. Such
models will be able to be refined as other future software models are. This will allow us
to construct embedded systems by specifying and designing their software parts in strong
relationships with some modeling of their environments.

4. Besides the formal tools we have already mentioned above in 1 (proof obligation gen-
erators and provers), the System Construction Database may contain other tools as well,
being able to be applied to the various models, namely model checkers, informal modelling
(UML) to corresponding formal modelling tools, model animators, abstract interpretation
tools, even testing tools, etc. The reason for incorporating such tools is that clearly there
is no universal panacea. The engineers need to have a large palette of possibilities at their
disposal in order to construct their computerized systems in the most effective way. The
System Construction Database offers the possibility to have all such tools working in an
integrated fashion on all the models that are recorded in the Database.

5. Besides the components and their mathematical models (be they future software or envi-
ronment components), it will be possible to also store in the System Construction Database
a document related to therequirementsof the future system. Such a document will take the
form of natural language fragments intermixed with slightly more structured texts contain-
ing the concise and precise requirements of the system in construction. A useful analogy is
that of a book of mathematics where definitions and theorems are labeled, numbered, and
written using a different font from that used in the rest of the text corresponding to explana-
tions and proofs: this will make the definitions and theorems immediately separable from
the rest of the text. By structuring in this way the requirement document, the traceability of
the requirements will be handled in an integrated fashion within the System Construction
Database. This will be done by connecting each structured requirement to some parts of
the abstract models dealing with that requirement. This traceability can then be pursued
during the design phase and the final software and environment construction. It must be
noted here that such requirement documents are usually very poor: either inexistent or far
too verbose. As a consequence, the designers have often lots of difficulties in extracting
from them the precise requirements. Experience shows that the famous, and said to be in-
evitable, syndrome of "specification changes during construction", appears to magically
disappear when such a special attention is payed initially to writing and structuring the
requirement document. Every large project must have an important initial phase devoted
to this task: the System Construction Database will then be the natural repository for such
requirement documents.

6. The System Construction Database could be spread over several sites so that the commu-
nication between people working in different places on the same project could be handled

3



far more comfortably than with high level programs sent over the network. But of course,
the contents of parts of a Database could also be copied under the most appropriate form
(XML), which will be far more convenient than, again, sending source files.

In conclusion, we question the present usage of High Level Programming Languages
for constructing large computerized systems. We propose instead to partially replace it by
defining and using a System Construction Database which will be far more appropriate as
an engineering medium than the actual programming languages. As a matter of fact, this
proposal is not really new:Eclipse is, among others, a proposal that has been made for a
number of years and that goes clearly in that direction.

4


