The Role of Invariants
in an Automatic Program Verifier

Myla Archer

Code 5546, Naval Research Laboratory,
Washington, DC 20375

archer@itd.nrl.navy.mil

Abstract. Invariants are central to establishing correctness of programs.
Thus, a large part of an automatic program verifier needs to be auto-
mated support for verifying program invariants. This paper discusses
where the invariants come from, what can be involved in establishing
that they hold, and the extent to which the process of finding and prov-
ing invariants can be automated. The paper also discusses several chal-
lenges related to establishing invariants and other correctness properties
of programs that, if addressed, would make the feedback produced by a
verifying compiler more clearly meaningful and understandable in terms
of the global behavior of programs.

1 Introduction

In undertaking to construct and exploit an automatic program verifier, one must
first focus in on the problems to be solved. There are several natural questions
that arise, e.g.:

— What does it mean to verify a program?
— What does it mean for a program to be correct?

— Assuming program verification involves proving a set of properties:
e What types of properties are to be established?
e Where do the properties come from?
e Are the properties capable of automatic proof?

— Finally, what support should be provided by the automatic program verifier
to allow a user to best exploit it?

This paper will explore these issues, and will argue that one major problem on
which to focus is the automation of invariant proofs. This paper will also take
note of several challenges related to establishing invariants and other correctness
properties of programs, and suggest that the notion of a verifying compiler as a
grand challenge be given a broad scope.

Sections 2 through 5 discuss the questions listed above. Section 6 discusses
related challenges. Finally, Section 7 presents some conclusions and discusses our
current and future research that relates to some of the challenges.



2 What does it mean to verify a program?

Since the seminal work in [11] and [6], program verification is often thought of in
terms of assertions that can be proved to hold at various points in the program.
In particular, for programs designed to run to completion while performing some
computation, assertions at the beginning and end of the program can be used
to define the expected result of the computation. The approach is also valid for
programs that run indefinitely; in this case, assertions (about input and output
streams) before reads and after writes can be used to define the expected visible
behavior of the program.

However, certain programs intended to run indefinitely are better specified
by giving an operational model, usually accompanied by invariant properties
of the model. This is the approach used, for example, in SCR [12], TIOA [18]
and other software development tools. What then needs to be established of the
program is that it refines the specification. This approach can be thought of as
model-based verification.

To many, verification means another form of model-based verification: model
checking. Model checking has been used more often in the context of hardware
verification than software verification, but recent advances such as automated
abstraction refinement (see, e.g., [7]) have extended its applicability to software.
The use of model checking for verification implies a specific set of properties to
be checked.

3 What does it mean for a program to be correct?

As discussed in Section 2, the term “program verification” in any sense means
establishing that the program has certain properties. These properties may be
defined by assertions associated with various points in the program, a model to
which the program must conform, or other assertions about the program as a
whole (such as liveness, or absence of deadlock or livelock).

For some programs, what is needed for correctness is clear. For example, a
program that sorts a list needs to take a list as input and produce a sorted version
of the list as output. In model-based verification, one establishes a relationship
(such as refinement or simulation) between a program and a model, and proves
properties of the model, which can then be interpreted in terms of program
properties. In tools such as SCR and TIOA, conformance to the model may be
the primary criterion for correctness. However, in model checking, the model is
usually created to establish a property of the program. With model checking,
and to some extent in any type of model-based verification, a major question
with respect to correctness is whether the set of models representing properties
to be established does in fact capture the desired behavior of the program.

There are many cases in which it may not be feasible to establish the full
desired behavior, i.e., the complete functional correctness, of a program, although
one would like at least to establish certain specific properties of the program,
e.g., security properties. For such cases, model-based verification is especially
appropriate.



For a very complex program, e.g., a graphical editor, the definition of cor-
rectness is equally complex, and it can even be unclear what correctness means,
precisely. For such programs, one may be most interested in “good” behavior
from the user’s and operating system’s point of view: Will the program termi-
nate unexpectedly due to a segmentation fault? Are there possible buffer over-
flows or deadlocks? Capturing most of these properties as program assertions is
straightforward.

4 Properties: formulation and proof

4.1 What types of properties are to be established?

All the correctness properties mentioned above can be formulated as invariants
of some state machine. The simplest category from the point of view of proof is
the state invariants: program assertions, absence of deadlock, and many specified
properties of models fall in this category. Conformance to a model can also be
cast as a state invariant of a composition automaton (representing composition
of the model and the program). Almost as simple are safety properties, which
involve at most a bounded sequence of transitions. More difficult to prove are
liveness properties, which can involve reasoning about an unbounded sequence
of states and may involve some fairness assumptions.

4.2 Where do the properties come from?

In the interest of separation of concerns, one can assume, in tackling the challenge
of building an automatic program verifier, that the properties that must be
established of the program are given. However, it is clear that an automatic
verifier will not be much help in establishing program correctness if properties
that imply its correctness have not been formulated by someone. Thus, a related
challenge is to persuade developers (or other stakeholders in a piece of software)
to specify in some form what the software is to do. A further related challenge is
to create a tool that, given appropriate information, can derive assertions about
a program to be used by an automatic program verifier from assertions about
an abstract model of the program’s behavior.

In the context of asserted programs, there has been some work [10] on dy-
namically discovering likely program invariants that could produce some of the
needed assertions in a program (which would then be subject to proof). There
has also been work on generating known invariants, starting from [8] and [9],
which consider program assertions. Later work includes [13], which also consid-
ers program assertions, and [15], which considers invariant properties of specifi-
cations. Although these approaches can help furnish some of the assertions, the
connection between the assertions and program correctness would need to be
established by someone who understands what the program is supposed to do,
or how a model is supposed to behave. Creating automated support for gener-
ating program assertions from assertions about a model appears to be an open
problem.



4.3 Are the properties capable of automatic proof?

Some program assertions can be established without induction: e.g., input asser-
tions can be assumptions, other assertions can be established through weakest
precondition computations, and further assertions can be established from exist-
ing ones by the application of decision procedures. A challenge in this connection
is to develop additional decision procedures to be integrated into existing ones
that can handle data types (beyond numerical, boolean, and enumerated types)
for which many assertions are decidable.

However, for certain classes of assertions, induction is required. For exam-
ple, induction is generally needed to establish loop invariants. Induction is also
generally needed to establish liveness properties. For a finite model, one can
sometimes avoid induction: properties of finite models can (if state explosion
is manageable) be established by exhaustive search (model checking). However,
establishing invariant properties of infinite (and sometimes, very large finite)
models requires theorem proving, and, typically, induction.

Thus, even though some program properties can be established by other
means, a general truly automatic program verifier would need to be able to do
induction proofs automatically. A completely general approach to doing this is
not possible, because the general problem of establishing whether an assertion is
an invariant is undecidable. In principle, provided the base and induction cases
can be stated in first order logic, valid invariants can be established by induction
automatically. However, efficiency is an issue; so is the problem that some prop-
erties being checked are false—as may be the case fore the induction step when
one is trying to prove a possibly true invariant by proving that it is inductive.
In particular, proofs by induction of invariants also often require strengthening
of the invariants, a process that is not always automatable. Strengthening can
be automated, to a degree, as has been illustrated in SCR. Note that an equiv-
alent approach to strengthening is the introduction of additional invariants as
lemmas. In the context of SCR, it has been possible to create an induction proof
strategy that uses automatically generated invariants [15] as lemmas and that
proves many properties of SCR specifications automatically; see, e.g., [14].

Thus, automating induction proofs of program properties is itself a challenge.
The goal would be to create a technique that would cover the kinds of asser-
tions that normally arise in practice. Techniques such as proof planning with
rippling [5, 4] have had some success, but are still not universal.

Mechanical proofs—by induction or otherwise—of correctness properties of
abstract models are often best constructed interactively. This is because for
abstract models, correctness properties can contain quite complex predicates
(e.g., the Authenticated predicate in the basic TESLA model in [2] involves
existential quantifiers and is recursively defined) and are potentially higher-order.
As shown by our experience with TAME [3], efficient interactive construction of
proofs can be made more feasible if an appropriate special domain tool or prover
interface is provided. (TAME is discussed further in Section 5, and in more detail
in Section 7.)



5 How to exploit an automatic program verifier?

As has been noted above, an automatic verifier presupposes some form of spec-
ification against which to verify the program. A user better equipped to specify
is thus better equipped to verify. But such a user is also better equipped to test.
To state the obvious: the user should test the assertions before using the pro-
gram verifier, because verification is expensive; only after one has evidence that
a set of properties is likely correct should one undertake to prove the properties.
Thus, a program verifier is best used in conjunction with a testing tool.

Equally important to knowing that a program has certain properties is know-
ing why it has those properties. For example, one usually does not want a prop-
erty to be vacuously true, as might happen (in a program) for the postcondition
of an unintentionally nonterminating loop, or (in a model) when all precondi-
tions of transitions are false. Thus, in addition being able to prove properties, it
is desirable for the verifier to produce some degree of proof explanation. A variety
of theorem proving techniques provide some form of explanation. Several auto-
matic proof techniques provide proof explanation; examples include ACL2 [16,
17] and approaches based on proof planning such as [19]. Our tool TAME [3]
provides explanations for invariant proofs produced with interactive guidance.

However explanations are produced, the same techniques used in proof expla-
nation can be adapted to provide some explanation of proof failure—i.e., what
point and proof goal did the proof reach when the automatic verifier was un-
able to continue? When the automatic verifier is unable to verify a program, the
next action needs to be either modification of the program or modification of
the specification. While performing the proper corrective action is an art form,
feedback from the automatic verifier is an important prerequisite to making the
correction.

Addressing some other challenges related to the automatic program verifier
would allow the automatic verifier to be exploited as fully as possible. The next
section discusses these challenges and notes how addressing them would help.

6 Related challenges

As noted above, the challenge of building an automatic invariant prover is a
part of the challenge of building an automatic program verifier. The challenge
of improving and expanding the scope of decision procedures also falls into this
category. But there are other challenges that, if addressed, would increase the
usefulness of an automatic verifier. Two have already been mentioned.

First, it would be helpful if software developers could be convinced to provide
some form of specification of what the software is supposed to do. With respect
to low level specification, this is not an unreasonable hope: for example, the
inclusion of assertions with C and Java code is provided for and beginning to
come into practice. It is likely unrealistic to hope that all software developers will
provide operational specifications that capture the intended behavior of the code.
However, when the correctness of the code is essential, such specifications are



more likely to be developed. One way of establishing that a program refines an
operational specification is to relate assertions in the specification (e.g., pre- and
post-conditions associated with transitions) to assertions in the code. Thus, in
cases where an operational specification is available, there is a second challenge:
automating the mapping of assertions in the specification to assertions in the
code, based on information provided by the user that relates program states to
abstract (specification-level) states and program segments to transitions in the
specification.

A third, further challenge is to develop methods that can be applied by de-
velopers in designing programs for verifiability, and induce the developers to use
them. While some such guidance already exists (e.g., avoid certain constructs),
this guidance is mostly of a “local” nature. An open question is whether guidance
can be provided for structuring programs so that particular properties (e.g., for
security, separation of data) are easier to establish.

Addressing these challenges would help ensure first, that the automatic pro-
gram verifier is proving properties of interest and second, that the automatic
verifier’s task is made as simple as possible.

7 Conclusions and Plans for the Future

A verifying compiler that verifies assertions in programs is only part of the answer
to the problem of producing verifiably correct programs. The challenge of build-
ing an automatic program verifier can be conceived more generally as covering
not only a verifier of assertions in programs but a verifier (perhaps interactive!)
that a program conforms to a model. For either the program-assertion-based
or model-based verification style, the automation of proofs of invariants, and in
particular induction proofs, will play central role.

This paper has identified several related challenges to be met; some of them
are directly implied by the challenge of building an automatic program verifier.
Others are associated with additional parts of the process of establishing correct-
ness properties of programs. Because addressing these others will increase the
effectiveness of the automatic program verifier, it is worth considering including
them as part of the overall challenge. Below is a summary of our current and
future work that does (or will) address some of the related challenges.

Two of the challenges identified above are addressed to some degree for
model-based verification by the tool TAME (Timed Automata Modeling En-
vironment) [1,3], a specialized interface to PVS [23] for proving properties of
timed I/O automata [20,21]. In particular, TAME attempts to make specifica-
tion of models easier. It also partially automates proofs of invariants, including
state invariants, transition invariants, and abstraction properties such as refine-
ment and forward simulation [22] by providing a set of high level proof steps
that allow a proof sketch to be mechanically checked. For SCR specifications,
TAME can prove many invariant properties automatically. TAME provides user
feedback for failed proofs both inside the prover at the point of a proof dead
end and in saved TAME proofs through structure, proof step names, and com-



ments. A prototype proof tool that translates TAME proofs into English has
been implemented. Work is continuing on improving TAME in all these areas.

It is also planned to extend the work on TAME by increasing the degree to
which proofs of invariants can be automated. This will be done by 1) developing
techniques that can prove more invariants automatically by building on previ-
ously proved invariants, finding alternative, useful instantiations of the inductive
hypothesis, and so on; and 2) exploring the possible use of techniques such as
rippling in proving invariants of TAME models.

Other plans for the near future include:

— The use TAME or a similar “special domain” PVS interface to model some
medium-sized programs and establish their correctness. The goal is to build
on the techniques used in TAME to permit program verification on a level
nearer to the level of program assertions.

— Development of automated support for translating assertions at the model
level into assertions at the program level.

Some interesting lessons, and perhaps some new associated challenges, are likely
to result from these efforts.

Acknowledgements

I thank Elizabeth Leonard and Sandeep Shukla for helpful discussions. I also
thank Elizabeth for comments on an earlier version of this paper.

References

1. Myla Archer. TAME: Using PVS strategies for special-purpose theorem proving.
Annals of Mathematics and Artificial Intelligence, 29(1-4):139-181, 2000. Pub-
lished Feb., 2001.

2. Myla Archer. Proving correctness of the basic TESLA multicast stream authen-
tication protocol with TAME. In Workshop on Issues in the Theory of Security
(WITS’02), Portland, OR, Jan. 14-15 2002.

3. Myla Archer, Constance Heitmeyer, and Elvinia Riccobene. Proving invariants of
I/0 automata with TAME. Automated Software Engineering, 9(3):201-232, 2002.

4. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: A
heuristic for guiding inductive proofs. Artificial Intelligence, 62:185-253, 1993.

5. Alan Bundy. The use of proof plans for normalization. In R. S. Boyer, editor,
Automated Reasoning: Essays in Honor of Woody Bledsoe, volume 7 of Automated
Reasoning Series, pages 149-166. Kluwer, 1991.

6. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576-583, 1969.

7. Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In Proc. 12th International Con-
ference on Computer-Aided Verification (CAV), pages 154-169. Springer-Verlag,
2000.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proc. 1977
Symp. on Principles of Programming Languages, January 1977.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables. In Proc. 1978 Symp. on Principles of Programming Languages, January
1978.

M. Ernst. Dynamically Discovering Likely Program Invariants. PhD thesis, Univ.
of Washington, 2000.

R. W. Floyd. Assigning meanings to programs. In Proceedings of Symposia in
Applied Mathematics, volume 19 of Mathematical Aspects of Computer Science,
pages 19-32. American Mathematical Society, 1967.

C. Heitmeyer, M. Archer, R. Bharadwaj, and R. Jeffords. Tools for construct-
ing requirements specifications: The SCR toolset at the age of ten. International
Journal on Computer System Science and Engineering, 20(1):19-35, January 2005.
Nikolaj Bjgrner I. Anca Browne and Zohar Manna. Automatic generation of in-
variants and intermediate assertions. Theoretical Computer Science, 173(1):49-87,
1997.

James Kirby, Jr., Myla Archer, and Constance Heitmeyer. SCR: A practical ap-
proach to building a high assurance COMSEC system. In Proc. 15th Annual Com-
puter Security Applications Conference (ACSAC ’99). IEEE Comp. Soc. Press,
Dec. 1999.

Ralph Jeffords and Constance Heitmeyer. Automatic generation of state invariants
from requirements specifications. In Proc. 6th International Symposium on the
Foundations of Software Engineering (FSE-6), Orlando, FL, Nov. 1998.

M. Kaufmann, P. Manolios, and J Strother Moore. Computer-Aided Reasoning:
An Approach. Kluwer Academic Publishers, 2000.

M. Kaufmann, P. Manolios, and J Strother Moore, editors. Computer-Aided Rea-
soning: Case Studies. Kluwer Academic Publishers, 2000.

D. Kaynar, N. A. Lynch, R. Segala, and F. Vaandrager. A mathematical framework
for modeling and analyzing real-time systems. In The 24th IEEE International
Real-Time Systems Symposium (RTSS), Cancun, Mexico, December 2003.
Manfred Kerber, Michael Kohlhase, and Volker Sorge. Integrating computer alge-
bra into proof planning. Journal of Automated Reasoning, 21(3):327-355, 1998.
N. Lynch and M. Tuttle. An introduction to Input/Output automata. CWI-
Quarterly, 2(3):219-246, Sept. 1989. Centrum voor Wiskunde en Informatica,
Amsterdam, Netherlands.

N. Lynch and F. Vaandrager. Forward and backward simulations — Part II: Timing-
based systems. Information and Computation, 128(1):1-25, July 1996.

Sayan Mitra and Myla Archer. PVS strategies for proving abstraction properties
of automata. FElectronic Notes in Theor. Comp. Sci., 125(2):45-65, 2005.

N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Prover
Guide, Version 2.4. Technical report, Comp. Sci. Lab., SRI Intl., Menlo Park, CA,
Nov. 2001.



