
Generating Programs plus Proofs by Refinement

Douglas R. Smith
Kestrel Institute

Palo Alto, CA 94304 USA
smith@kestrel.edu

1 Technical Approach

We advocate an automated refinement approach to developing programs and
their proofs. The approach is partially embodied in the Specware system [6]
which has found industrial and government applications. Our view is that the
future of software engineering lies in the tight integration of synthesis and anal-
ysis processes.

Specifications

Refinement-oriented development starts with the requirements of the procur-
ing organization. These requirements are typically a mixture of informal and
semiformal notations that reflect the needs of the organization. To provide the
basis for a clear contract, the requirements must be formalized into specifications
that both the procuring organization (the buyer) and the developer (the seller)
can agree to. Specifications can be expressed at a variety of levels of abstrac-
tion. At one extreme a suitable high-level programming language can sometimes
serve to express executable specifications. However, an executable specification
requires the inclusion of implementation detail that (1) is time-consuming to de-
velop and get right, and (2) might be better left to the developer’s discretion. At
the other extreme, a property-oriented language (such as a higher-order logic)
can be used to prescribe the properties of the intended software with minimal
prescription of implementation detail. The solution in Specware is a mixture
of logic and high-level programming constructs that provides a wide-spectrum
approach, allowing specification writers to choose an appropriate level of ab-
straction from implementation detail.

Refinement

A formal specification serves as the central document of the development and
evolution process. It is incrementally refined to executable code. A refinement
typically embodies a well-defined unit of programming knowledge. Refinements
can range from situation-specific/ad-hoc rules, to domain-specific transforma-
tions, to domain-independent theories/representations of abstract algorithms,
data structures, optimization techniques, software architectures, design patterns,



protocol abstractions, and so on. A crucial feature of a refinement from specifi-
cation A to specification B is that it preserves the properties and behaviors of
A in B, while potentially adding more detail in B. This preservation property
allows us to compose refinements, meaning that a chain of refinements from an
initial specification to a low-level executable specification can be treated as a
single property- and behavior-preserving refinement, thereby establishing that
the generated code satisfies the initial specification. An intrinsic capability of
a refinement process is that proofs of consistency between the source and tar-
get of a refinement can be composed in a similar way. While this capability
has not been implemented for general-purpose design (to our knowledge), it
paves the way for refinement machinery that produces programs and proofs at
the same time. Evidence for the feasibility of this capability may be found in
several recent domain-specific code generators that generate programs, proofs,
and other certification documentation automatically from specifications; e.g. the
Specware-based JavaCard Applet generator from Kestrel [3], and the AutoBayes
and AutoFilter projects at NASA Ames [15, 16].

Why take a refinement approach to developing programs plus proofs? We
can look at this question from several points of view.

1. Software Lifecycle View – Boehm observed many years ago that it is expo-
nentially more expensive to fix an error in the requirements phase than to fix it in
subsequent design, maintenance, and evolution phases [2]. The lesson is to focus
attention on the requirements up-front and to rigorously maintain consistency
during development and evolution (for a comparative experiment along these
lines see [17]). This is the essence of refinement-oriented development. Boehm
has also shown that many measures of software cost (including cost, schedule,
and errors) increase superlinearly in code size (approximately to the 1.2 power).
By focusing on specifications that omit implementation detail, the developer
gains a quantitative advantage in managing this intrinsic complexity during de-
sign and evolution. In a simple experiment at Kestrel, Green and Westfold [5]
show a 2-5x increase in dependencies when moving from specs to code. Since
dependencies seem to be closely related to the inertia of complex systems, again
the advantage accrues to a development process that focuses development effort
on specifications and early designs.

2. Language View – Progress in Computer Science is often measured by
progress in the the abstraction levels provided by programming and modeling
languages. The natural continuation is towards languages that abstract away
increasing amounts of implementation detail, together with the generative mech-
anisms for adding the missing detail. Compilers and automatic program genera-
tors typically work by supplying fixed implementations for the constructs of the
source language. Clearly, for general-purpose design there will not be unique ways
to implement property-oriented specifications, but instead there will be a choice
of design abstractions that may apply. Therefore, a general-purpose refinement
environment will be interactive, in much the same way that many successful
theorem-provers are currently driven by a combination of user-guidance and au-
tomated tactics (e.g. PVS, HOL, Isabelle). However, by narrowing the scope to



domain-specific specification languages, the refinement process can again be fully
automatic; e.g. Planware [1], JavaCard, AutoBayes, AutoFilter, and others).

3. Cost of Assurance View – A refinement-oriented development process has
a different cost structure than traditional development. There is a capital in-
vestment in building domain models and machine-usable design knowledge, but
these costs are amortized through reuse. Thus the cost of producing the first
program in a domain may be higher, but the incremental cost of producing sub-
sequent versions and other members of a product-line family should decrease
below the level of conventional programming. The cost of handling of proof obli-
gations of specs and refinements should be less than the cost of analyzing the
final product. Moreover, the incremental cost of (re)assurance under evolutionary
steps is dramatically reduced under refinement when compared with post-hoc
verification. The key lies in the reuse of the refinements. In a domain-specific
setting, an evolution step is performed by modifying the initial specification or
model, and then automatically generating a new program, plus its proof and cer-
tificates. In a general-purpose setting, the refinement structure may be at least
partially replayed. If the refinements are generic and derived from reusable design
knowledge, then the refinements may often still apply and absorb the changes.
The assurance costs are mainly borne at library-development time when the
generic/reusable refinements are verified (or generated correctly).

2 Progress

Specware Foundations

Specware [6] provides a mechanizable framework for the composition of spec-
ifications and their refinement to codes in several programming languages. The
framework is founded on a cocomplete category of specifications. The specifi-
cation language, called MetaSlang, is based on a higher-order logic with predi-
cate subtypes and extended with a variety of ML-like programming constructs.
MetaSlang supports pure property-oriented specifications, as well as executable
specifications and mixtures of these two styles. Specification morphisms are used
to structure and parameterize specifications, and to refine them. Colimits are
used to compose specifications. Diagrams are used to express the structure of
large specifications, the refinement of specifications to code, and the application
of design knowledge to a specification. Recent extensions of Specware support
the specification of behavior through a category of abstract state machines [8].

The framework features a collection of techniques for constructing refine-
ments based on formal representations of programming knowledge. Abstract al-
gorithmic concepts, datatype refinements, program optimization rules, software
architectures, abstract user interfaces, and so on, are represented as diagrams
of specifications and morphisms. We arrange these diagrams into taxonomies,
which allow incremental access to and construction of refinements for particular
requirement specifications [12].



The framework is partially implemented in the research systems Specware,
Designware, Epoxi and Planware. Specware provides basic support for com-
posing specifications and refinements, and generating code. Code generation
in Specware is supported by inter-logic morphisms that translate between the
specification language/logic and the logic of a particular programming language
(currently CommonLisp, C, and Java) is intended to be general-purpose and has
found use in industrial settings. Designware extends Specware with taxonomies
of software design theories and support for constructing refinements from them
[13]. Epoxi extends Specware to support the specification and refinement of be-
havior and the generation of imperative code [9]. Planware transforms behavioral
models of tasks and resources into high-performance scheduling algorithms [1].

A key feature of Kestrel’s approach is the automated application of reusable
refinements and the automated generation of refinements by instantiation. Previ-
ous experience with manually constructed and verified refinement (e.g. in VDM)
has resulted in small-scale developments and costly rework when requirements
change. In contrast, automated construction of refinements allows larger-scale
applications and a more rapid evolution process. For example, in the 1990’s
Kestrel developed a strategic airlift scheduler for the US Air Force that was en-
tirely evolved at the specification level. The application had about 24000 lines of
generated code from a first-order specification and over 100 evolutionary deriva-
tions were carried out over a period of several years using the KIDS system
[10], each derivation consisted of approximately a dozen user decisions. Cur-
rent scheduling applications being developed using the newer Planware system
consist of over 100k lines of generated code from less than 1000 lines of source
specification. Code generation is completely automatic and takes a few minutes.

3 Research Challenges

Although we have emphasized a synthetic approach to program assurance, our
view is that the future of software engineering lies in the integration of synthesis
and analysis processes. By way of analogy, conventional programming relies on
a tight integration of synthesis and analysis – compilers and their type analyzers
work together to check the programmer’s work and generate executables; and
inside the compiler, flow analysis is used to inform various optimizations that
transform and speed up the executable.

Similarly, we see a great opportunity for a tight integration between the re-
finement process and the assurance generation process. At the spec level, there
are proof obligations on the static consisency that can be verified (this is es-
sentially an extended type analysis, that includes for example, checking that
predicate subtype properties hold). We would like to record such proofs together
with the spec. When we compose specs, we would like to reuse those proofs to
obtain necessary proofs of consistency of the composite spec.

Refinements also have proof obligations, which can be handled in a post-
hoc verification style, or a correct-by-construction style (which we prefer). Con-
structive theorem proving (e.g. [4, 7]) in the correct-by-construction generation



of refinements provides a clear example of integrated, automated analysis and
synthesis. In order to construct an expression to serve as the translation of a
domain symbol in a specification morphism, we set up the problem of finding
a constructive proof for a forall-exist formula [11]. A witness for the existential
may be found by saturation procedures in general logics or algorithmically by
constraint solving in restricted theories.

One example of refinement construction involves the use of constructive theo-
rem proving and the reuse of code templates – code fragments for instantiating a
code template can be generated as witnesses to existentially quantified variables
in the correctness formula for the template, resulting in a correct-by-construction
instantiation of the template [14, 11]. The proving process should be more ro-
bust and informed because it is taking place in a context where both intent (the
specification) and design knowledge (the template and code context) are explicit.

Another point of connection lies in refinement generators. Some optimization
techniques, such as simplification, partial evaluation, and finite differencing, are
written as metaprograms that use a constructive prover and generate refine-
ments. To support the construction of both code and proofs, the metaprogram
must produce also a proof for the obligations of the refinement and appropriately
transform the proofs in the source specification.

One general need is for mechanisms to carry proofs along with specs as they
undergo refinement. With such mechanisms, the definitions and proofs at one
level would be refined to definitions and proofs at the next level, so that proofs
are integral to design, rather than a side activity. Proofs must also be composed
under colimit, so that all composition and refinement activities produce both
code and proofs.

In addition to the core technology thrust above, we see the following artifacts
as items that we can contribute or seek to co-develop with other participants:

1. Constraint solvers and constructive theorem-provers
2. Libraries of design theories and refinement generators – e.g. theories and

application mechanisms for generating refinements that embody knowledge of ar-
chitectures, formalized design patterns, policy classes, algorithm theories, datatype
refinements, optimization transforms, and so on.

Finally, we would be interested in engaging in the following kinds of activities:
1. Rational reconstruction of benchmarks – Develop formal specifications for

various benchmarks, as well as relevant domain theories and design theories,
followed by a rational reconstruction of the design by refinement of similar code
from the specifications.

2. Participation in standardization activities – OMG has several ongoing stan-
dardization activities that ultimately aim for a refinement-like process, including
MDA (Model-Driven Architecture), MOF (Meta-Object Formalism), Abstract
Syntax Tree Models (ASTM), and QVT (Query-View-Transformation). We can
be involved with pushing in the direction of clear semantics, automated tools,
and the option for extension to high-assurance development when appropriate.



References

1. Becker, M., Gilham, L., and Smith, D. R. Planware II: Synthesis of schedulers
for complex resource systems. Tech. rep., Kestrel Technology, 2003.

2. Boehm, B. Software Engineering Economics. Prentice-Hall, Englewood Cliffs,
N.J., 1981.

3. Coglio, A. Toward automatic generation of provably correct Java Card applets. In
Proc. 5th ECOOP Workshop on Formal Techniques for Java-like Programs (July
2003).

4. Green, C. Application of theorem proving to problem solving. In Proceedings of
the First International Joint Conference on Artificial Intelligence (1969), pp. 219–
239.

5. Green, C., and Westfold, S. Experiments suggest high level formal models
and automated code synthesis significantly increase dependability. Tech. Rep.
KES.U.00.8, Kestrel Institute, January 2001.

6. Kestrel Institute. Specware System and documentation, 2003.
http://www.specware.org/.

7. Manna, Z., and Waldinger, R. A deductive approach to program synthesis.
ACM Transactions on Programming Languages and Systems 2, 1 (January 1980),
90–121.

8. Pavlovic, D., and Smith, D. R. Composition and refinement of behavioral spec-
ifications. In Proceedings of Automated Software Engineering Conference (2001),
IEEE Computer Society Press, pp. 157–165.

9. Pavlovic, D., and Smith, D. R. Composition and refinement of behavioral
specifications. In Proceedings of Sixteenth International Conference on Automated
Software Engineering (2001), IEEE Computer Society Press, pp. 157–165.

10. Smith, D. R. KIDS – a semi-automatic program development system. IEEE
Transactions on Software Engineering Special Issue on Formal Methods in Software
Engineering 16, 9 (1990), 1024–1043.

11. Smith, D. R. Constructing specification morphisms. Journal of Symbolic Compu-
tation, Special Issue on Automatic Programming 15, 5-6 (May-June 1993), 571–606.

12. Smith, D. R. Toward a classification approach to design. In Proceedings of Al-
gebraic Methodology and Software Technology (AMAST) (1996), vol. LNCS 1101,
Springer-Verlag, pp. 62–84.

13. Smith, D. R. Mechanizing the development of software. In Calculational System
Design, Proceedings of the NATO Advanced Study Institute, M. Broy and R. Stein-
brueggen, Eds. IOS Press, Amsterdam, 1999, pp. 251–292.

14. Smith, D. R., and Lowry, M. R. Algorithm theories and design tactics. Science
of Computer Programming 14, 2-3 (October 1990), 305–321.

15. Whalen, M., Schumann, J., and Fischer, B. Synthesizing certified code.
In Proc. Formal Methods Europe (FME 2002) (Copenhagen, Denmark, 2002),
Springer LNCS 2391, pp. 431–450.

16. Whittle, J., and Schumann, J. Automating the implementation of kalman filter
algorithms. Tech. rep., NASA Ames Automated Software Engineering Group, 2004.
submitted for publication.

17. Widmaier, J., Schmidts, C., and Huang, X. Producing more reliable software:
Mature software engineering process vs. state-of-the-art technology? In Proceedings
of the International Conference on Software Engineering 2000 (Limerick, Ireland,
2000), ACM, pp. 87–92.


