A Mini Challenge:
Build a Verifiable Filesystem

Rajeev Joshi and Gerard J. Holzmann

Laboratory for Reliable Software™™,
Jet Propulsion Laboratory,
California Institute of Technology,
Pasadena, CA 91109, USA

{Rajeev.Joshi,Gerard.Holzmann}@jpl.nasa.gov
http://eis.jpl.nasa.gov/lars

Abstract. We propose tackling a “mini challenge” problem: a nontriv-
ial verification effort that can be completed in 2-3 years, and will help
establish notational standards, common formats, and libraries of bench-
marks that will be essential in order for the verification community to
collaborate on meeting Hoare’s 15-year verification grand challenge. We
believe that a suitable candidate for such a mini challenge is the devel-
opment of a filesystem that is wverifiably reliable and secure. The paper
argues why we believe a filesystem is the right candidate for a mini chal-
lenge and describes a project in which we are building a small embedded
filesystem for use with flash memory.

A mini challenge

The verification grand challenge proposed by Hoare [1] sets the stage for the
program verification community to embark upon a collaborative effort to build
verifiable programs. At a recent workshop in Menlo Park [2], there seemed to
be a consensus that a necessary stepping stone to such an effort would be the
development of repositories for sharing specifications, models, implementations,
and benchmarks so that different tools could be combined and compared.

We believe that the best way of reaching agreement on common formats
and forging the necessary collaborations to build such a repository is to embark
upon a shorter-term “mini challenge”: a nontrivial verification project that can
nonetheless be completed in a short time. An ideal candidate for such a mini
challenge would have several characteristics: (a) it would be of sufficient com-
plexity that traditional methods such as testing and code reviews are inadequate
to establish its correctness, (b) it would be of sufficient simplicity that specifi-
cation, design and verification could be completed by a dedicated team in a
relatively short time, say 2-3 years, and (c) it would be of sufficient importance

** The work described in this paper was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.

that successful completion of the mini challenge would have an impact beyond
the verification community.

At the Menlo Park workshop, some participants (notably Amir Pnueli) sug-
gested that a suitable candidate would be the verification of the kernel! of the
Linux operating system [3]. While the task of verifying the Linux kernel un-
doubtedly meets conditions (a) and (c) above, it does not meet condition (b).
In fact, given that the current Linux kernel is well over 4 million lines of source
code, it seems a tall order to write a formal specification for it within 2 years,
much less verify the correctness of the implementation. Instead, we propose that
a more suitable candidate for such a mini challenge would be the development
of a verifiable filesystem. We believe there are several reasons why a filesystem is
more attractive as a first target for verification than an operating system kernel.

Firstly, most modern filesystems have a clean, well-defined interface, con-
forming to the POSIX standard [4], which has been in use for many years. Thus
writing a formal specification for a POSIX-compliant filesystem would require
far less effort than writing a kernel specification. In fact, one could even write an
abstract reference filesystem implementation which could be used as the speci-
fication for a verification proof based on refinement.

Secondly, since the underlying data structures and algorithms used in filesys-
tem design are very well understood, a verifiable filesystem implementation could
conceivably be written from scratch. Alternatively, researchers could choose any
of several existing open-source filesystems and attempt to verify them. This
makes filesystem verification attractive, since it allows participation by both
those researchers interested in a posteriori verification, as well as those inter-
ested in “constructing a program and its proof hand-in-hand”.

Thirdly, although filesystems comprise only a small portion of an operating
system, they are complex enough that ensuring reliability in the presence of
concurrent accesses and unexpected power failures is nontrivial. Indeed, recent
work by Yang et al shows that many popular filesystems in widespread use have
serious bugs that can have devastating consequences, such as deletion of the
system root directory [7].

Finally, since almost all data on modern computers is now managed by filesys-
tems, their correctness is of great importance, both from the standpoint of reli-
ability as well as security. Development of a verified filesystem would therefore
be of great value even beyond the verification community.

Directions and Challenges

The goal of the proposed mini challenge is to build a wverifiable filesystem. In
particular, we are interested in the problem of how to write a filesystem whose
correctness can be checked using automated verification tools. After decades of
experience with automatic program verification, we know that such an effort
inevitably requires that key design knowledge be captured and expressed in
machine readable forms that can be used to guide the verification tools. This

1 Actually, Pnueli suggested verifying “Linux”; we assume he meant the Linux kernel.

includes (a) a formal behavioral specification of the functionality provided by the
filesystem, (b) a formal elaboration of the assumptions made of the underlying
hardware, and (c) a set of invariants, assertions and properties concerning key
data structures and algorithms in the implementation. We discuss each of these
artifacts below.

Specification Most modern filesystems are written to comply with the POSIX
standard [4] for filesystems. This standard specifies a set of function signatures
(such as creat, open, read, write), along with a behavioral description of
each function. However, these behavioral descriptions are given as informal En-
glish prose, and are therefore too ambiguous and incomplete to be useful in a
verification effort. The first task therefore is to write a formal specification of
the POSIX standard (or at least of a substantial portion of the standard) either
as a set of logical properties or as an abstract reference implementation. Such
formal specifications have been written in the past: for instance, by Morgan and
Sufrin [5], who wrote a specification of the UNIX filesystem in Z, and by Bevier,
Cohen and Turner [6], who wrote a specification for the Synergy filesystem in Z
(and also partially in ACL2). Although these specifications did not completely
model POSIX behavior (for instance, neither completely modeled error codes,
nor file permissions), they could serve as starting points for developing a more
complete specification.

Assumptions about underlying hardware In order to provide a rigorous formal
statement of the properties of the filesystem (especially its robustness with re-
spect to power failure), it is necessary to rely on certain behavioral assumptions
about the underlying hardware. In order to make the filesystem useful, it is nec-
essary to understand what assumptions can reasonably be made about typical
hardware such as hard drives or flash memory. These assumptions need to be
explicitly identified and clearly stated, as opposed to used implicitly in correct-
ness proofs (as is often the case). In the ideal situation, the filesystem would be
usable with different types of hardware, perhaps providing different reliability
guarantees.

Properties of data structures and procedures As noted before, an attractive fea-
ture of the proposed mini challenge is that one could either write a verifiable
filesystem from scratch, or verify an available filesystem. In either case, however,
in order to use automatic checking tools to prove nontrivial correctness properties
of the implementation, it will inevitably be necessary to identify and express de-
sign properties such as data structure invariants, annotations describing which
locks protect which data, and pre- and post-conditions for library functions.
Most typical filesystems require use of many common data structures such as
hash tables, linked lists and search trees. A proof of filesystem correctness would
therefore result in development of libraries of formally stated properties and
proofs about these data structures, which would be useful in other verification
efforts as well.

A reliable flash filesystem for flight software

At the NASA/JPL Laboratory for Reliable Software (LaRS), we are interested
in the problem of building reliable software that is less reliant on following tradi-
tional ad-hoc processes and more reliant on use of automated verification tools.
As part of this effort, we are currently engaged in a pilot project to help build
a reliable filesystem for flash memory, for use as nonvolatile storage on board
future missions.

Flash memory has recently become a popular choice for use on spacecraft
as nonvolatile storage for engineering and data products, since it has no moving
parts, consumes low power and is easily available. There are two common types of
flash memory, NAND flash and NOR flash [8]. While NOR flash is more reliable
and easier to program, it has lower density and poor write and erase times, and
is therefore less attractive as a data storage device. While it is possible to design
flight software to use flash memory directly as a raw device, it is typically much
easier to write robust flight software on top of a filesystem layer that provides
common file operations for creating, reading and writing files and directories.
In fact, the flight software on several recent NASA missions, such as the Mars
Exploration Rovers and Deep Impact, uses a filesystem to access flash memory.

Building a robust flash filesystem, however, is a nontrivial task. Performance
dictates the use of caches and write buffers, which increase the danger of incon-
sistencies in the presence of concurrent thread accesses and unexpected power
failures. To add to the challenge, flash memory, especially NAND flash mem-
ory, requires certain additional issues to be addressed such as arbitrary bit flips,
blocks that unexpectedly become “bad” (i.e., permanently unusable), and lim-
ited lifetimes (block usually become bad after they have been erased a certain
number of times, typically 100,000). In addition, a flash filesystem written for
use on a spacecraft must obey additional constraints; for instance, flight software
is typically allowed to allocate memory only during initialization.

The goal of our pilot project is to build a robust flash filesystem by following
a design methodology that is based on documenting as much as possible in a
machine readable form that is amenable to automatic verification. Thus the
intent is not only to build a working filesystem, but also to produce key design
documents in machine-readable forms that can be used by automated verification
tools. Although less ambitious than the mini challenge we have described above
(which is aimed at building a general purpose filesystem), our project has similar
interests and goals with the mini challenge we have proposed.

Summary

An important first step toward the Verification Grand Challenge is the develop-
ment of a repository containing specifications, models and implementations. We
believe the best way to develop this repository is to tackle a “mini challenge”
that can be completed in a short period of time, around 2-3 years. An excellent
candidate for such a mini challenge seems to be the development of a verifiable
filesystem that is both reliable and secure. Since filesystems are well-defined and

well-understood, different research teams can take different approaches to build-
ing such a verifiable filesystem, from building it from scratch to verifying one of
many available filesystems. We believe that the problem is well-suited as a mini
challenge for the verification community and will serve as a starting point for
the grand verification challenge.

References

1. Tony Hoare, The Verifying Compiler: A Grand Challenge for Computing Research,
Journal of the ACM, 50(1), January 2003, pp. 63-69.

2. Workshop on the Verification Grand Challenge, SRI International, Menlo Park,
CA, February, 2005. See http://www.csl.sri.com/users/shankar/VGCO5 .

3. Amir Pnueli, Looking Ahead, Presentation at the Workshop on The Verification
Grand Challenge, SRI International, Menlo Park, CA, February, 2005. Slides avail-
able at http://www.csl.sri.com/users/shankar/VGCO5/pnueli.pdf .

4. The Open Group, The POSIX 1003.1, 2003 Edition Specification, available online
at http://www.opengroup.org/certification/idx/posix.html .

5. Carroll Morgan and Bernard Sufrin, Specification of the UNIX Filing System, IEEE
Transactions on Software Engineering, Vol SE-10, No.2, March 1984, pp. 128-142.

6. William R. Bevier, Richard Cohen, and Jeff Turner, A Specification for the Synergy
File System, Technical Report 120, Computational Logic, Inc., September 1995.

7. J. Yang, P. Twohey, D. Engler, and M. Musuvathi, Using Model Checking to Find
Serious File System Errors, Proceedings of the Conference on Operating Systems
Design and Implementation (OSDI), San Francisco, December 2004, pp. 273-288.

8. Data I/O, A Collection of NAND Flash Application Notes, Whitepapers and Arti-
cles, available at http://www.data-io.com/NAND/NANDApplicationNotes.asp .

