Constraint Solving and Symbolic Execution

Jian Zhang

Laboratory of Computer Science
Institute of Software
Chinese Academy of Sciences
Beijing 100080, China

Email: zj@ios.ac.cn

1 Introduction

For many decades, the correctness of programs has been a concern for computer
scientists and software engineers. At present, it is still not easy to ensure the
correctness of nontrivial programs, although many researchers have made various
attempts in this direction.

Recently, the Verifying Compiler is proposed as a grand challenge in com-
puting research [3]. But its goal can be achieved incrementally. The following is
quoted from Hoare (page 68 of [3]):

The progress of the project can be assessed by the number of lines of
code that have been verified, and the level of annotation and verification
that has been achieved. The relevant levels of annotations are: struc-
tural integrity, partial functional specification, total specification. The
relevant levels of verification are: by testing, by human proof, by ma-
chine assistance, and fully automatic.

For program verification to become mainstream technology in software en-
gineering, we need to convince programmers that the benefit will outweigh the
“investment”. Obviously, highly efficient and easy-to-use tools are necessary. In
this paper, we briefly describe and evaluate a path-oriented approach to partial
program verification, which is based on Constraint Satisfaction and Symbolic
Execution (CoSEx). It can be regarded as something between testing and full-
scale verification. We think that the approach is quite appealing and can serve as
the basis of powerful tools. For some programs, their correctness can be proved
automatically by the tools; and for many other programs, if they have bugs, the
bugs can be found automatically.

2 Semantic Path-oriented Analysis

As we know, a program can usually be represented by some kind of directed
graph, e.g., control-flow graph, (extended) finite-state machine. From such a
graph, one can generate many paths, each of which starts with the entry of the
program (or module).



Path-oriented testing is a common testing strategy. With this kind of strategy,
one tries to examine the program’s paths one by one. But in general, a non-trivial
program has too many (or an infinite number of) paths, and it is impossible to
examine all of them within a reasonable amount of time. Thus the concept of
“basis paths” was proposed. Such paths are expected to be representatives of
the set of all paths.

In the software engineering literature, most testing techniques are syntactic,
in that they tend to neglect the exact meaning of statements and conditional
expressions in the program. For example, one may consider the def-use rela-
tionship (i.e., where a variable is defined /modified, and where it is used), but not
consider the way the variable is modified. This kind of abstraction is necessary if
the techniques and tools are used on large-scale programs. But the price to pay
is the loss of accuracy and expressiveness. For example, a typical problem with
most path-oriented testing methods is that many paths (in the program’s con-
trol flow graph) turn out to be unexecutable. Static analysis tools often generate
false alarms. And so on.

Alternatively, we can work on semantic path-oriented program analysis. That
is, we take the meanings of the statements and conditional expressions into
consideration. Under certain restrictions, we can perform some kind of partial
verification on many programs, fully automatically. This is done in the following
several steps:

(1) Annotate the program with appropriate assertions (preconditions or post-
conditions).

(2) Generate a set of paths from the program’s graphical representation.

(3) For each path, decide whether it is executable.

We may attach the negation of a correctness property at the end of the program.
If input data are found such that the program reaches the end while satisfying
all the assertions, the program is buggy.

In the third step, we first obtain a set of constraints (called the path condi-
tion), such that it is satisfiable if and only if the path is executable. This can be
done through symbolic execution.

Symbolic execution [4] is a technique for testing and verification. During the
execution, each variable’s value is a symbolic expression, in terms of the initial
values of the input variables. For example, suppose we have the input variable
a and b, whose initial values are denoted by ag and by, respectively. Then, after
the assignment z = a + 2b, the value of the variable z will be (ag + 2 * by).

After executing a path symbolically, we get the path condition, which is a
relational expression describing the constraints on the initial values of the input
variables, e.g., ag + 2 * by > 4. Given any vector of values satisfying the path
condition, the program will be executed along the path. Thus the path condition
represents a set of input data. It is a subset of the input space, yet it is usually
infinite. One symbolic execution may correspond to many real executions.

The satisfiability of the path condition can be decided using various tech-
niques, such as decision procedures, theorem proving, constraint solving, etc.



We should note that there is some trade-off between the expressiveness of the
language and the difficulty of deciding path executability. In the following, we
list several forms of the constraints and the hardness of the associated decision
problem:

— Boolean formulas: decidable, NP-hard

— linear constraints over rationals: decidable, linear-time

— linear constraints over rationals and integers: decidable, NP-hard
— non-linear constraints over integers: undecidable

In [5,7], a prototype toolkit is described, which uses symbolic execution and
constraint solving techniques. It analyzes a subset of C programs statically. Non-
linear arithmetic is not allowed, but logical operators can be used in the pro-
gram. Pointers and structures are considered in [6]. Ordinary assertions (in C
programs) are accepted, but not quantified formulas. This restriction reduces
the complexity of the decision algorithm. Moreover, assertions are actively used
by many programmers for various purposes [2].

The CoSEx approach performs path-wise analysis, and it analyzes each path
accurately (under reasonable assumptions of the syntax of the path). It can be
used to verify the correctness of certain programs, e.g., bubble sorting program
when the size of the input array is a fixed constant. Such a program has a finite
number of (symbolic) execution paths. However, most programs have an infinite
number of paths, and the approach can only be used to find bugs (if any).

3 Comparison with Related Approaches

We think that there are several factors to consider when comparing different
approaches. These factors include:

— applicability (e.g., the restriction to finite-state programs)

— power or preciseness (e.g., full verification, partial verification, bug finding
with or without false alarms)

— the user’s investment (e.g., writing a lot of lemmas, or just writing the pre-
condition and the postcondition)

Compared with traditional testing and static analysis techniques, the CoSEx
approach does not scale up to large programs (such as programs with millions
of lines of code), yet it can provide the user with accurate analysis results. False
alarms are eliminated in most cases.

Compared with model checking, the CoSEx approach does not require the
program to have finite number of states. Although there have been some exten-
sions to model checking so that it can be used to verify infinite-state systems,
their effectiveness has yet to be seen.

Compared with theorem proving, the CoSEx approach is more automatic,
but the properties it can prove are not so general. It is more advantageous to
use the approach on buggy programs.



An abstract interpretation-based static program analyzer like ASTREE [1]
considers a superset of the possible program executions, while our path-oriented
approach considers a subset of all the executions, because only a finite number
of paths are analyzed. But it may avoid false alarms.

An Example

In [8], 5 modern static analysis tools (including Splint and PolySpace) are evalu-
ated using a number of nontrivial model programs which contain buffer overflows.
It is found that, in some cases, some tools are silent, while other tools can detect
the vulnerabilities and signal many false alarms.

Two false alarm examples (“aia2” and “inp”) are given in Fig. 5 and Fig. 6
of [8]. We have tried our toolkit on the first example, since the second one has
complicated expressions which are beyond the scope of the tools.

In the example “aia2”, there are two arrays (x and y), and there is an as-
signment “y[x[i]] = i” (line 8). Although one element of the array x has the
value (-1), that value is never used to index into y. Thus there is actually no
underflow. Using our tool ePAT (which is an extension of PAT [5]), we can check
that this is indeed the case. We just run ePAT twice, each time attaching one
the following two assertions to the statements before line 8:

e(x[i] < 0);
e(x[i] >= 2);

Here @ denotes an assertion. It is found that neither of the two extended paths
is executable. Thus the index expression x[i] is within the bound. (The array
y is of size 2.)

Other similar tools like PREfix are not able to perform this kind of analysis.
They are aimed at analyzing much larger programs.

4 Concluding Remarks

Up to now, only a few programmers have used program verification technology
in developing nontrivial software. Wider use of the technology calls for powerful
and efficient supporting tools, although education is also quite important.

An approach is outlined and evaluated in this paper. It is based on the anal-
ysis of program paths, and the analysis involves detailed semantic information.
Symbolic execution and constraint solving techniques are used, which are au-
tomatic and accurate. Hopefully this approach will lead to rewarding tools for
average programmers.

There are still other difficulties and challenging problems, for example, how to
deal with procedures/functions. In the near future, we expect that the approach
is applicable to small or medium-sized programs or key modules in the software
system. While most other techniques try to scale up to large programs, we are
more interested in scalability in the expressiveness of the input language. We
think that the accurate analysis of small programs is also very important, and
it can be complementary to other verification/analysis approaches.



References

1. Patrick Cousot et al. The ASTREE analyzer, Proc. 14th European Symposium on
Programming (ESOP 2005), LNCS 3444, Springer, 21-30, 2005.

2. C.AR. Hoare, Assertions in modern software engineering practice, Keynote address,
26th Int’l Computer Software and Applications Conf., Oxford, England, Aug. 2002.

3. Tony Hoare, The verifying compiler: A grand challenge for computing research, J.
of the ACM, 50(1): 63-69, 2003.

4. J.C. King, Symbolic execution and testing, Comm. of the ACM, 19(7): 385-394,
1976.

5. Jian Zhang and Xiaoxu Wang, A constraint solver and its application to path feasi-
bility analysis, Int’l J. of Software Engineering and Knowledge Engineering, 11(2):
139-156, 2001.

6. Jian Zhang, Symbolic execution of program paths involving pointer and structure
variables, Proc. of the 4th Int’l Conf. on Quality Software (QSIC), IEEE Computer
Society Press, 2004.

7. Jian Zhang, Chen Xu and Xiaoliang Wang, Path-oriented test data generation us-
ing symbolic execution and constraint solving techniques, Proc. 2nd Int’l Conf. on
Software Engineering and Formal Methods, IEEE Computer Society Press, 242-250,
2004.

8. Misha Zitser, Richard Lippmann and Tim Leek, Testing static analysis tools using
exploitable buffer overflows from open source code, Proc. of the 12th ACM SIGSOFT
Int’l Symp. on Foundations of Software Engineering, 97-106, 2004.



