
Lessons from the JML Project

Gary T. Leavens1 and Curtis Clifton1??

Department of Computer Science, Iowa State University,
226 Atanasoff Hall, Ames, IA 50011 USA

Abstract. To have impact, a grand challenge should provide a way for
diverse research to be integrated in a synergistic fashion. Synergy in the
JML project comes from a shared specification language, and thus holds
several lessons for the verifying compiler grand challenge. An important
lesson is that the project should focus considerable resources on specifica-
tion language design, which still contains many open research problems.
Another important lesson is that, to support such a specification lan-
guage, the project needs to involve groups doing research on extensible
compilers and integrated development environments.

1 Introduction

Hoare’s verifying compiler grand challenge is “the construction and application
of a verifying compiler that guarantees correctness of a program before running
it” [18, p. 63]. This challenge is of such a broad scope that a project meeting
the challenge would involve “a significant section of the research community”
that would “work together towards a common goal, agreed to be valuable and
achievable by a team effort” [18, p. 63].

This position paper focuses on one way that these researchers could work
together, drawing lessons from the experience of the Java Modeling Language
(JML) project [8,19]. These lessons are relevant because the JML project, al-
though smaller and less ambitious, has many parallels with the verifying compiler
grand challenge.

2 What Kind of Specifications?

To verify a program, one must have a specification. The specification can be im-
plicit, such as that the program should not encounter unexpected exceptions due
to obvious program errors (such as dereferencing a null pointer or indexing an
array beyond its bounds). But finding such bugs is possible with existing tools,
such as ESC/Java [14]. While such tools are a subject of current research and
engineering, they hardly constitute a grand challenge at this point. Therefore,
implicit in the grand challenge are interesting specifications, written in some

?? Current address for Curtis Clifton: Dept. of Comp. Sci. and Soft. Eng., Rose-Hulman
Inst. of Technology, 5500 Wabash Ave., Terre Haute, IN 47803.



2

specification language. Examples of interesting specifications include specifica-
tions of functional behavior that involves data values and specifications of safety
properties that describe synchronization of concurrent threads.

The main cost of such interesting specifications is that, in general, they can-
not be automatically generated. Instead, they must be written, to some extent,
by humans. The reason human input is needed is that only humans can judge
the intent of a specification. For example, consider a square root routine. A par-
ticular implementation may produce roots with 7 decimal digits of accuracy, but
only a human can decide if the intended behavior is 7 digit accuracy, rather than
5 or 10 digit accuracy. Put another way, interesting specifications describe the
set of all acceptable implementations abstractly; the intent behind this descrip-
tion allows them to be used as contracts that govern future evolution of both
implementations and clients [24]. Ultimately these contracts are a matter for
human judgment and negotiation.

3 Why Design a Specification Language?

Strictly speaking, the grand challenge can proceed with only a few interesting
specifications. For example, a group of experts might specify the Linux kernel or
write a few other interesting specifications as tests of verification technology. If
the focus of the project is solely on proving programs correct, then a small set of
such specifications would be adequate, and the costs of writing the specifications
and designing specification languages could be largely ignored by the project.

However, we believe that including specification language design is necessary
to maximize the project’s impact, and would also have several other benefits.

The relationship between the project’s potential impact and including spec-
ification language design in its scope can be seen by considering the alternative.
Suppose that the project only works with a small set of test specifications, and
does not provide an easily-usable, well-documented specification language. As-
suming that the project succeeds, then how can programmers apply its verifi-
cation technology to code that does not implement the test specifications? In
this scenario, such applications might still be very costly, as programmers would
have to write new interesting specifications, which we are assuming would be
hard. Hence many programming projects would not be able to cost-effectively
use the new verification technology.

Another benefit, not to be overlooked, is that a specification language is a
good way to coordinate efforts among different verification tools. This is one
of the main lessons of the JML project, which has been fairly successful in
coordinating the efforts of diverse research groups [8]. Having JML as a common
specification language allows these groups to also share users, and thus have a
larger pool of users to test their ideas and to obtain feedback. It also facilitates
the exchange of ideas among research groups.

Therefore, we believe that one of the project’s overall goals should be to make
it easy (inexpensive) and valuable (cost-effective) for ordinary programmers to
write interesting formal specifications. One milestone would be to replace most



3

informal documentation with formal specifications, while decreasing the over-
all cost of program development and maintenance, since at that point formal
specifications become economically attractive.

Achieving such a goal requires efforts in education, language design, and
tools. The educational effort needs to address documentation and training is-
sues. This implies that documentation of the specification language, including
examples, should have a high priority. It also implies that tutorial and teaching
materials should have a high priority. This also presents an opportunity include
in the project people interested in computer science education, with the goal
of integrating more formal methods training into the standard computer sci-
ence curriculum. One promising approach to doing this would be to promote
undergraduate textbooks that use formal specifications.

The specification language design and tool-building efforts should have as
their overall goal making it as easy as possible for programmers to read and
write interesting specifications, in order to minimize educational costs. In the
rest of this position paper, we will focus on these language design and tool
building problems, since they are the ones we have the most experience with in
JML.

4 Nature of the Specification Language

Assuming that the project will devote some effort to specification language de-
sign, we now consider what kinds of specification languages would be suitable,
and whether there should be a single specification language.

A basic decision is whether the specification languages should be tailored to
some specific programming language. That is, should they be interface specifi-
cation languages (like Eiffel, Larch/C++, or JML), or should they be languages
that are independent of any particular programming language (as are VDM, Z,
or OCL)? Perhaps the specification language could even be that of some theorem
prover, such as PVS or Isabelle?

We believe that the specification languages should be interface specification
languages. The great advantage of an interface specification language is that it
can specify details particular to some programming model, such as exceptions,
visibility restrictions, encapsulation, and typing. Furthermore, an interface spec-
ification language can be translated into the input of various theorem provers
and other tools, serving as a common front end for them. From the perspective
of the verification tools, it may be possible to achieve some of the benefits of an
interface specification language, while being somewhat language independent,
by targeting an execution platform, such as the Java Virtual Machine or Mi-
crosoft’s Common Language Runtime. However, even if the language targeted
such an execution platform, to have impact on programmers the project would
still require user-level specification languages that map to such platform-level
languages.



4

One of the lessons of the JML project is that focusing on just a single speci-
fication language allows that language to serve as a central coordination mech-
anism for diverse groups of researchers. The common language:

– gives these groups a lingua franca in which to present semantic issues and
tool-building issues,

– provides fresh insights as various technologies can be compared and con-
trasted through how they deal with common language features, and

– relieves groups of some of the tedium of fine-grained language design, which
frees them to innovate in specialized areas.

Therefore, for the remainder of this paper, we will assume a single specifica-
tion language targeting a specific programming language. Most of the arguments
we raise will also apply to a lower-level specification language that targets an
execution platform.

5 Problems in Specification Language Design

A major lesson of the JML project is that, even for sequential programs, the
design of interface specification languages is still an interesting and quite difficult
research problem.

The overall problem for specification language design is how the language
can give its users sufficient value to justify the cost of specification. This is
hard because, in our experience, the costs of writing a fairly complete functional
specification of program behavior is usually about the same as that of writing
the code to implement it. Therefore, it is necessary to either reduce these costs
or to provide a wealth of tool support to compensate.

JML’s approach has been to provide a wealth of tool support. This tool
support works to both decrease the cost of writing specifications (for example,
by improving the reporting of errors in specifications) and increase the useful-
ness of specifications (by using them to derive testing oracles and to generate
documentation, among other things).

In addition to this tool support, JML is also designed to be easy for Java
programmers to adopt and use. The main technical ideas here are to use an
extended subset of Java expressions for assertions (drawing on the Eiffel experi-
ence), provide mathematical models as Java classes (drawing on the Larch and
VDM experience), and prohibit side effects in expressions used in assertions [19].

Techniques for avoiding side effects in JML assertions are rather draconian
at the moment and need refinement in order to be practical. The basic problem
is that in a language like JML, one must be able to call methods in specifi-
cations. For example, to specify Java collections, one must be able to call the
equals method on Objects. However, because of the specification inheritance
used in JML to guarantee behavioral subtyping [11,20], saying that Object’s
equals method is free of side effects means that no side effects are allowed in
any overriding equals method [19]. We are working on allowing side effects that



5

are not observable, which would allow caches in such methods, based on work
by Barnett, et al. [3,27].

Another area of ongoing research is how to specify frame axioms (modifies
clauses) and invariants in a modular fashion. To achieve modularity for frame ax-
ioms, there are several current approaches. The Boogie method [2,21] uses new
language statements (unpack and pack), a dynamically unique object owner,
and explicit specification of what objects are threatened by a method. While
this makes soundness clear and is very flexible, it is (at present) fairly tedious
to use in practice. Like the Boogie method, other techniques [22,25] seem to
involve some control of aliasing. The same seems true of a modular treatment
of invariants. Again, the Boogie method is more explicit, and also uses unique
ownership, and other methods [26] also rely on control of aliasing. In any case
some integration with alias control is necessary to prevent representation expo-
sure. Thus these problems and current solutions seem to lead the research into
the realm of alias-controlling type systems [4,28]. However, such alias-controlling
type systems and their integration with specification languages are still a very
active area of research. The work on JML cited above [25,26] builds on one such
research project, the Universe type system [12].

Another notable area of research is how to specify and verify callbacks.
Higher-order features, and especially callbacks, are well known to cause diffi-
culties both for practical programming [30]. In specification, the main problem
is that the specifications become highly parameterized [13,15], and hence diffi-
cult to write and read. In JML we are pursuing the “grey-box approach” [6,7,5]:
writing specifications in a refinement-calculus style as abstract programs, but
interpreting the internal callbacks as observable.

All the above issues in specification language design apply to specification
languages for sequential programs. Another host of issues enters when one tries
to specify concurrent programs. The JML effort has mostly ignored these prob-
lems, because it has focused on a sequential subset of Java. However, one prob-
lem that is important for concurrent programs is also a problem for sequential
programs: how to specify orderings of events. That is, the ability to specify per-
mitted sequences of operations would be a useful adjunct to traditional Hoare-
style specification languages. Some specification languages have used finite-state
machine descriptions for such sequencing [1]. Temporal logic is a widely-known
formalism for such sequence specifications [23], although other formalisms may
be easier for ordinary programmers to write and read [10,17]. There has been
some preliminary work in JML on this [9].

Beyond these issues in functional specification languages is the largely unex-
plored territory of specification languages that combine features for specification
of both functional behavior (including data values) and concurrency control (in-
cluding safety and liveness). Most specification languages and tools address only
one of these areas. However, modern software requires a specification language
that can help integrate techniques from these two disparate camps. A start to-
wards this problem in JML is found in the work of Rodŕıguez et al. [29]. This



6

work uses atomicity to reduce reasoning about concurrent programs to the se-
quential case.

6 Keeping up with Evolution

As we argued above, to have maximal impact on practice, a specification lan-
guage and its tools must be designed for practicing programmers. The problem is
that widely-used languages and their programming environments evolve rapidly,
and it is difficult for researchers to keep up with industrial evolution of languages
and development environments. This is the case for any “standardized” language,
such as C (since the standards committees issue a new standard roughly every
5 years), and perhaps more so for languages that are not standardized, such as
Java.

The history of the JML project provides several lessons related to this prob-
lem. The JML project started in 1998 as an outgrowth of work on the interface
specification language Larch/C++.1 Larch/C++ was an interface specification
language tailored to the specification of C++ modules. C++ was originally cho-
sen because it was a popular object-oriented language, and we believed that we
could have maximum impact by working with real problems in a broadly-used
language.

However, the size and complexity of C++ presented great problems for our
tool building efforts. In particular, the grammatical complexity of C++ pre-
sented enormous difficulty. In practice, another large difficulty was the unsafe
nature of C++, which complicated specifications in many practical ways.

Thus when Java became available, we abandoned work on Larch/C++ and
started work on an interface specification language tailored to Java—JML. Java
was (at the time) a much simpler language than C++, which initially seemed to
solve many of the tool problems.

Unfortunately, Java has since grown much larger than it was originally; fur-
thermore, it has grown rather quickly. Indeed, the latest release of Java (version
1.5 also known as Java 5) introduces several non-trivial features, so it is chal-
lenging for an open-source project like JML to keep up. This dilemma is likely
to be faced by the verifying compiler challenge also. In short: (a) in order to
have impact, it is helpful to target a popular language, (b) but one way that
a language stays popular is by evolving rapidly. This puts great pressure on
fundamental tool support: parsing and basic compiler infrastructure have to be
frequently updated to track the language’s evolution.

Another issue for practical adoption is building integrated development en-
vironments (IDEs). Few modern programmers use the traditional command line
compilers and old-style text editors; instead they demand integrated support for
editing, compiling, and debugging (to say nothing of version control, support
for refactoring, etc.). Thus, to have an impact—indeed, just to have users—
tools must fit into some IDE. Like languages, IDEs are also evolving rapidly,
1 The Larch family of interface specification languages [16], was a refinement of Hoare-

style specification languages exemplified by VDM.



7

as evidenced by Eclipse2. Thus, while it is not a grand challenge to produce a
state-of-the-art IDE, the project must keep up with their evolution.

The lesson we draw from this is that the project must have groups that are
interested in building and maintaining basic compiler tool and IDE support.
Researchers in formal methods are not interested in building basic compiler
tools and IDEs; so the project must find people who are interested in these
issues, in order to help the formal methods researchers stay focused. That is,
formal methods researchers need help from some groups that are dedicated to
providing up-to-date and extensible compiler support. These groups could track
changes in programming language(s) and relieve some of the pressure in dealing
with the evolution of popular languages. Similarly, formal methods researchers
need help from groups that are dedicated to providing extensible IDEs.

The need to interact with researchers in extensible compilers and IDEs should
be seen as an opportunity to involve more areas of computing in the grand chal-
lenge. One way to convince researchers interested in compilers to work with the
grand challenge is to let them see additional opportunities for optimization and
for exploring language extension techniques. Extensibility is needed not just to
track evolution in the programming language, but also to allow experimentation
in specification language design. Similarly, IDE researchers might be attracted
to the grand challenge if they see opportunities to experiment with extensibility,
or to improve the programmer’s experience through improved error reporting,
specification-enabled visualization, or editing mechanisms.

It is a fortunate fact that, at least in the United States, compiler research
and formal methods research are housed in the same division of the National
Science Foundation. It will be easier to get support for a grand challenge if we
can find ways to involve compilers and other subareas of computing (such as
education and human-computer interfaces).

7 Conclusions

To summarize, the grand challenge needs interesting specifications as tests of its
verification technology. To have maximum impact, the grand challenge should
have as a goal making it easy and cost-effective to write such interesting speci-
fications. This necessarily involves some effort in specification language design.
We listed some of the research challenges in specification language design from
our experience with the JML project; the grand challenge should not assume
that specification languages are completely understood and adequate.

The lessons from the JML project also indicate that the verifying compiler
grand challenge should involve researchers in extensible compiler technologies
and IDEs. Work in all these areas is necessary for the project to have a practical
impact worthy of being a “grand challenge.”

2 Details on Eclipse’s rapid evolution are available from http://www.eclipse.org.

http://www.eclipse.org


8

Acknowledgments

Thanks to the program committee for comments that helped clarify our argu-
ments.

The work of Leavens and Clifton was supported in part by the US National
Science Foundation through grants CCF-0428078 and CCF-0429567.

References

1. T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via
static analysis. In Conference Record of POPL’02: The 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 1–3, Port-
land, Oregon, Jan. 16–18, 2002.

2. M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification
of object-oriented programs with invariants. Journal of Object Technology, 3(6),
2004.

3. M. Barnett, D. A. N. W. Schulte, and Q. Sun. 99.44% pure: Useful abstractions
in specification. Obtained from the web at the following URL: http://guinness.cs.

stevens-tech.edu/∼naumann/publications/purityJoT.pdf, January 2005.
4. J. Boyland, J. Noble, and W. Retert. Capabilities for sharing. In J. L. Knudsen,

editor, ECOOP 2001 — Object-Oriented Programming: 15th European Conference,
Budapest, Hungary, volume 2072 of Lecture Notes in Computer Science, pages 1–
27, Berlin, June 2001. Springer-Verlag.

5. M. Büchi. Safe language mechanisms for modularization and concurrency. Techni-
cal Report TUCS Dissertations No. 28, Turku Center for Computer Science, May
2000.

6. M. Büchi and W. Weck. A plea for grey-box components. Technical Re-
port 122, Turku Center for Computer Science, Presented at the Workshop
on Foundations of Component-Based Systems, Zürich, September 1997, 1997.
http://www.abo.fi/˜mbuechi/publications/GreyBoxes.html.

7. M. Büchi and W. Weck. The greybox approach: When blackbox specifications hide
too much. Technical Report 297, Turku Center for Computer Science, Aug. 1999.
http://www.abo.fi/˜mbuechi/publications/TR297.html.

8. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino,
and E. Poll. An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer (STTT), 7(3):212–232, June 2005.

9. Y. Cheon and A. Perumendla. Specifying and checking method call sequences in
JML. In H. R. Arabnia and H. Reza, editors, Proceedings of the 2005 International
Conference on Software Engineering Research and Practice (SERP ’05), Volume
II, Las Vegas, Nevada, June 27-29, 2005, pages 511–516. CSREA Press, 2005.

10. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and
H. Zheng. Bandera: Extracting finite-state models from Java source code. In
Proceedings of the 22nd International Conference on Software Engineering, pages
439–448, New York, NY, June 2000. ACM Press.

11. K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through specification
inheritance. In Proceedings of the 18th International Conference on Software En-
gineering, Berlin, Germany, pages 258–267. IEEE Computer Society Press, Mar.
1996. A corrected version is Iowa State University, Dept. of Computer Science TR
#95-20c.

http://guinness.cs.stevens-tech.edu/~naumann/publications/purityJoT.pdf
http://guinness.cs.stevens-tech.edu/~naumann/publications/purityJoT.pdf


9

12. W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of
Object Technology (JOT), 2005. To appear.

13. G. W. Ernst, J. K. Navlakha, and W. F. Ogden. Verification of programs with
procedure-type parameters. Acta Informatica, 18(2):149–169, Nov. 1982.

14. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In Proceedings of the ACM SIGPLAN 2002 Con-
ference on Programming Language Design and Implementation (PLDI’02), volume
37, 5 of SIGPLAN, pages 234–245, New York, June 17–19 2002. ACM Press.

15. J. A. Goguen. Parameterized programming. IEEE Transactions on Software En-
gineering, SE-10(5):528–543, Sept. 1984.

16. J. V. Guttag, J. J. Horning, S. Garland, K. Jones, A. Modet, and J. Wing. Larch:
Languages and Tools for Formal Specification. Springer-Verlag, New York, NY,
1993.

17. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231–274, June 1987.

18. Hoare. The verifying compiler: A grand challenge for computing research. J. ACM,
50(1):63–69, Jan. 2003.

19. G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How the design
of JML accommodates both runtime assertion checking and formal verification.
Science of Computer Programming, 55(1-3):185–208, Mar. 2005.

20. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R. Cok, P. Müller, and
J. Kiniry. JML reference manual. Department of Computer Science, Iowa State
University. Available from http://www.jmlspecs.org, July 2005.

21. K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In M. Oder-
sky, editor, European Conference on Object-Oriented Programming (ECOOP), vol-
ume 3086 of Lecture Notes in Computer Science, pages 491–516. Springer-Verlag,
2004.

22. K. R. M. Leino and G. Nelson. Data abstraction and information hiding. ACM
Trans. Prog. Lang. Syst., 24(5):491–553, Sept. 2002.

23. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, New York, NY, 1992.

24. B. Meyer. Object-oriented Software Construction. Prentice Hall, New York, NY,
second edition, 1997.

25. P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular specification of frame
properties in JML. Concurrency, Computation Practice and Experience., 15:117–
154, 2003.

26. P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for layered
object structures. Technical Report 424, ETH Zurich, Mar. 2005.

27. D. A. Naumann. Observational purity and encapsulation. In Fundamental Aspects
of Software Engineering (FASE), 2005. Obtained from the author.

28. J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In E. Jul, editor,
ECOOP ’98 – Object-Oriented Programming, 12th European Conference, Brus-
sels, Belgium, volume 1445 of Lecture Notes in Computer Science, pages 158–185.
Springer-Verlag, July 1998.

29. E. Rodŕıguez, M. B. Dwyer, C. Flanagan, J. Hatcliff, G. T. Leavens, and Robby.
Extending JML for modular specification and verification of multi-threaded pro-
grams. Technical Report SAnToS-TR2004-10, Kansas State University, Depart-
ment of Computing and Information Sciences, May 2005. To appear in ECOOP
2005.

http://www.jmlspecs.org


10

30. C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-
Oriented Programming. ACM Press and Addison-Wesley, New York, NY, second
edition edition, 2002.


	Lessons from the JML Project

