
Trends and Challenges in Algorithmic Software
Verification

Rajeev Alur

Department of Computer and Information Science
University of Pennsylvania

Email: alur@cis.upenn.edu

Recent years have witnessed remarkable progress in principles and tools for
automated software verification. In this position paper, I briefly discuss the rel-
evant projects in my group, and outline some near-term challenges for the com-
munity as concrete milestones for measuring progress.

1 Research Directions

In this section, I will briefly describe some directions we are currently pursuing
that can enhance the scope and scalability of software verification tools. More
information about these projects can be obtained from my homepage http:
//www.cis.upenn.edu/~alur.

1.1 Model Checking Structured Programs

Classical program verification focussed on correctness of structured procedu-
ral programs, while typical model checkers are aimed at concurrent finite-state
reactive systems. Recent progress in software model checking allows checking
temporal logic requirements of code via abstraction and symbolic state-space
exploration. Standard temporal logics such as LTL and CTL employed by cur-
rent model checkers, however, can specify only regular properties, and properties
such as correctness of procedures with respect to pre and post conditions, that
require matching of calls and returns, are not regular. Recently, we have intro-
duced a temporal logic of calls and returns (CaRet) for specification and algo-
rithmic verification of correctness requirements of structured programs. CaRet
can specify a variety of non-regular properties such as partial and total correct-
ness of program blocks and access control properties that involve inspection of
the call-stack. Even though verifying context-free properties of pushdown sys-
tems is undecidable, we show that model checking CaRet formulas against a
pushdown model is decidable. This result allows us to combine the classical
Hoare-style reasoning about structured programs, Pnueli-style temporal speci-
fications of reactive programs, and automated reasoning as in model checking.
The decidability of CaRet against pushdown automata is not ad-hoc, and we
have developed a theory of visibly pushdown languages that is rich enough to
model interprocedural program analysis questions and yet is tractable and ro-
bust like the class of regular languages. Current efforts include extending these
results to branching-time logics and tree automata.



1.2 Games and Interfaces

While a typical software component has a clearly specified (static) interface in
terms of the methods it supports, the information about the correct sequencing
of method calls is usually undocumented. For example, for a file system, the
method open should be invoked before the method read, without an interven-
ing call to close. While such interfaces can be made precise using, for instance,
regular expressions as types, these kinds of precise specifications are typically
missing. Such dynamic interfaces for components can help applications program-
mers, and can possibly be used by program analysis tools to check automatically
whether the component is being correctly invoked. In the JIST project, we are
developing a novel solution for automatically extracting such temporal specifi-
cations for Java classes. Given a Java class, and a safety property such as “the
exception E should not be raised”, the corresponding (dynamic) interface is
the most general way of invoking the methods so that the safety property is
not violated. Our synthesis method first constructs a symbolic representation of
the finite state-transition system obtained from the class using predicate abstrac-
tion. Constructing the interface then corresponds to solving a partial-information
two-player game on this symbolic graph. We have developed a sound approach
to solve this computationally-hard problem approximately using algorithms for
learning finite automata and symbolic model checking for branching-time log-
ics. A preliminary implementation of the proposed techniques has succeeded in
constructing interfaces, accurately and efficiently, for sample Java2SDK library
classes.

1.3 Real-time and Hybrid Systems

Embedded systems, such as controllers in automotive, medical, and avionic sys-
tems, consist of a collection of interacting software modules reacting to a continu-
ously evolving environment. Despite the proliferation of embedded devices in al-
most every engineered product, development of embedded software remains a low
level, time consuming and error prone process. This is due to the fact that mod-
ern programming languages abstract away from time and platform constraints,
while correctness of embedded software relies crucially on hard deadlines. The
Charon project at Penn aims at developing novel model-based design and im-
plementation methodology for synthesizing reliable embedded software using
the foundations of hybrid systems. Hybrid systems models allow mixing state-
machine based discrete control with differential-equation based continuous dy-
namics. In the past, we have developed algorithms and tools for model checking
of timed and hybrid systems. More recently, we are developing a programming
environment using hybrid models with constructs such as hierarchy, concurrency
with synchronous continuous interaction, and preemption. A key technical chal-
lenge in this work is bridging the gap between the platform-independent and
timed semantics of the hybrid models and the executable software generated
from it. This is crucial to be able to infer properties of software from properties
of models. We are also exploring ways of integrating generation of control tasks
with scheduling.



2 Challenge Projects

Research in formal methods has typically focussed on questions such as “what is
the most expressive temporal logic that can be algorithmically verified,” “what
is the most effective way of pruning the search for a satisfying assignment for a
propositional formula in clausal form,” and “what are all the errors that can be
found in existing code using this highly optimized tool for pointer analysis?” Such
questions have led to improved understanding and technology, and are clearly
essential for progress. At the other extreme, one can speculate about “grand”
challenges such as developing a verifying compiler, or certified software, or new
design paradigms. Instead, I have tried to articulate some concrete suggestions
regarding some sample projects that are feasible within the next five years. I
believe that they all share the following characteristics. First, each project is be-
yond the ability of individual researchers as well as current technology. Second,
with sustained commitment and collaboration among a group of researchers, the
project seems feasible. Third, the progress on each challenge can be measured
and evaluated, and the goal of the project is clearly articulated. Finally, success
in these projects will have notable impact in terms of addressing the skepti-
cism among computer scientists concerning viability of formal methods, and in
education and dissemination of our tools.

2.1 Automatic Graders for Classical Programming Assignments

Typical programming assignments in undergraduate courses include writing re-
cursive programs such as Quicksort, and writing multi-threaded programs with
synchronization such as Dining Philosophers. Typically, the submitted code is
checked in an automated manner by executing it on sample tests. The goal of
this challenge is to develop automatic grading programs that can verify the
submitted code.

While formal methods tools have reported amazing successes, the heuristics
underlying the decision procedures employed by the tools tend to be very fragile,
and using these tools is always a frustrating experience for the novice users.
To develop automatic grading programs, we need to focus on the robustness
and usability of the tool rather than performance measures such as the number
of lines of code analyzed by the tool or the time taken to analyze published
benchmarks. Consequently, developing such automatic graders is an interesting
challenge for the verification technology. Software model checking is not yet
a scalable technology, but I believe with some effort, it is possible to develop a
robust grading tool for analyzing the submitted code by exploiting the knowledge
of the problem being solved during the abstraction phase.

The criteria for evaluating progress and success in this project are clear: with
some training, the students who have correct solutions should be able to get their
code verified by the tool, and the instructor should find the tool valuable enough
so that (s)he recommends the tool to other instructors for use. If successful, this
will make educators around the world, and the undergraduate students, aware
of the promise and utility of formal methods and program analysis.



2.2 Conformance Checkers for Network Protocols

Network protocols has been a fruitful domain for application of formal meth-
ods. Existing efforts in formal analysis of network protocols are usually aimed
at formalizing the specification of the protocol and proving that it has desirable
properties. There have been some efforts in constructing executable code from
such rigorous specifications. A complementary effort that can serve as a challenge
to automated tools will be to establish that existing code for a protocol such as
tcp or dhcp conforms to the published RFC specification. The RFC specification
is partially in the form of state machines, and can possibly be extracted using
automated tools. To demonstrate that C code implementing such a protocol in,
say Linux, is a refinement of the RFC specification in a formal sense, is a non-
trivial task that would require combination of several abstraction and analysis
technologies. Again, I feel that this is something that is beyond the abilities of
the existing tools, but can be achieved with domain-specific focus and efforts.

The success in this project should eventually lead to a scenario in which
regulatory agencies will publish new RFCs in a form which can be analyzed
by the tool, and the industries will be compelled to publish evidence of the
conformance of their implementations with respect to the RFC specifications.
Such success will result in improved reliability of widely used network protocols,
and also adoption of formal methods by the industry.

2.3 Code Generator for Simulink

Contemporary industrial control design already relies heavily on tools for math-
ematical modeling and simulation. The most popular of such tools is Simulink
developed by Mathworks. While commercial tools for compiling Simulink mod-
els into executable software exist, they do not offer any verification guarantees
for the generated code. Programming languages community has largely ignored
this domain, but as embedded devices become more ubiquitous, the importance
of embedded systems programming will increase. When embedded software is
employed in safety-critical applications such as automobiles and autonomous
medical devices, the need for high assurance is obvious. Consequently, the cur-
rent state of poorly understood relationship between the models and the code
is not satisfactory. This creates an opportunity and a challenge problem for the
formal methods community. Applying formal methods to introduce rigor into
the code generation step is an interesting research challenge that can have a sig-
nificant impact on reliability of control software. The semantic gap between the
model and the code is large: the semantics of the model is typically defined as a
solution to differential or difference equations, while the software consists of pe-
riodic tasks. This gap makes the code generation problem particularly challeng-
ing. Research in synchronous languages, time-triggered architectures, real-time
scheduling, control theory, and hybrid systems offers insights into this prob-
lem, and can be exploited to build a semantics-preserving code generator for
Simulink-like models.



2.4 Stateful Specifications for Java Libraries

As explained in Section 1.2, behavioral interfaces can capture temporal con-
straints such as the method initSign must be invoked before calling the method
sign, without an intervening call to the method initVerify. Rigorously speci-
fied behavioral interfaces can play a critical role in documentation, maintenance,
testing, verification and ultimately, in ensuring provable security properties of the
system. Researchers in programming languages and software engineering have
made a variety of proposals for notations for specifying interfaces (a prominent
effort in this direction is the Java Modeling Language), automatic extraction of
such interfaces, and for enforcement or verification of conformance of usage. A
unified effort to annotate all the classes in public Java libraries and open source
applications with stateful interfaces in machine readable and formal notation
will be a worthy project.

To make this project a reality, first we need to agree on the notion of a
stateful interface and a formal notation for expressing it. Second, we need to
develop tools that can either extract such interfaces automatically from exist-
ing libraries, or find ways that will facilitate people to add these annotations.
Finally, the interfaces will be useless unless we have effective analysis tools that
will check client code against the interfaces or check conformance of newer ver-
sions of libraries with respect to interfaces for older versions. The combination
of these activities make this an interesting project requiring collaboration and
commitment from a team of researchers. Given the wide-spread use of Java, and
the enthusiasm for open source projects, I believe that such interfaces will find
expected as well as unexpected use.


