
Reliable Software Systems Design
Gerard J. Holzmann

Laboratory for Reliable Software

NASA/JPL Pasadena, CA 91109, USA

Abstract
The grand challenge that is the focus of this conference targets the development of a
practical methodology for software verification: a methodology that can help us to reduce
the number of residual defects in software products. Reducing residual defects is of
course not in itself the objective of this exercise; the true objective is to reduce the
number of failures in the use of software products. Or in other words: the objective is the
development of a methodology for “reliable software systems design.”

It has often been argued that with the right training, discipline, and tools it should be
possible to produce zero-defect code. Very few things in life, though, are zero-defect –
not even the things that can be considered life critical. If you practice sky-diving, you are
probably acutely aware that your main parachute could fail to open, no matter how
carefully you check it before each jump. The parachutist would also be wise not to trust a
company that tries to sell him a zero-defect parachute. He is more likely to avoid disaster
by bringing a spare chute on his jumps. That is: the seasoned parachutist takes the
possibility of component failure into account in the adoption of a system that has a
significantly lower probability of system failure. Elevators are another good example. Of
course an elevator can fail, for instance when the cable from which it is suspended
breaks. But, the elevator system as a whole is designed in such a way that when the cable
breaks, the car will not come crashing down. We trust the system, even though we know
that none of its components are zero-defect. Note that in the case of the elevator mere
redundancy does not solve the problem (i.e., operating multiple elevators in parallel). A
reliable system is designed with the possibility of component failure in mind, and with
remedies in place to significantly reduce the odds of system failure.

It is worth contemplating how deeply engrained the discipline of reliable system design
really is, outside software engineering. If your kitchen-sink leaks, you can close a valve
that stops the flow of water to that sink. The valve is there because experience has shown
that sinks do occasionally leak, no matter how carefully they are constructed to prevent
just that. If you short-circuit an electrical outlet in your home, a fuse will blow. The fuse
is there to prevent greater disaster in case the unimaginable happens. The presence of the
fuse and the valve do not signify an implicit acceptance of sloppy workmanship; they are
an essential part of reliable system design.

Most software today is build without valves and fuses. We try to build perfect parachutes
that do not need backup. When software fails, we blame the developer for failing to be
perfect. Would it not be wiser to assume from the start that even carefully constructed
and verified software components, like all other things in life, may fail in unexpected
ways, and use this knowledge to construct assemblies of components that provide
independently verifiable system reliability?

