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Abstract. Testing remains the principal means of verification in many
certification regimes. Formal methods of verification will coexist with
testing and should be developed in ways that improve, supplement, and
exploit the value of testing. I describe automated test generation, which
uses technology from formal methods to mechanize the construction of
test cases, and discuss some of the research challenges in this area.

1 Introduction

By testing I mean observation of a program in execution under controlled condi-
tions. Observations are compared against an explicit or informal oracle to detect
bugs or confirm correctness. Much of the testing process is automated in mod-
ern development environments, but construction of test cases (i.e., the specific
experiments to be performed) remains a largely manual process.

Testing is the method by which most software is verified today. This is true
for safety critical software as well as the commodity variety: the highest level of
flight critical software (DO-178B Level A) is required to be tested to a structural
code coverage criterion known as MC/DC (Modified Condition/Decision Cover-
age) [1]. And although formal methods of analysis and verification are becoming
sanctioned, even desired, by some certification regimes, testing continues to be
required also—because it can expose different kinds of problems (e.g., compiler
bugs), can examine the program in its system context, and increases the diversity
of evidence available.

The weakness of testing is well-known to the formal methods and verification
communities—it can only show the presence of bugs—but those communities are
now beginning to recognize its strength: it can show the presence of bugs—often,
very effectively. It is a great advantage in verification if the software to be verified
is actually correct, so inexpensive methods for revealing incorrectness early in
the development and verification process are necessary for verified software to
be economically viable.
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Thus, testing is not a rival to formal methods of verification, but a valuable
and complementary adjunct. It is worthwhile to study how each can support the
other, both in the technology that they employ, and in their contribution to the
overall goal of cost-effective verification.

In this regard, the most significant recent development in testing has been
the application of technologies from verification (notably, model-checking, SAT
solving, and constraint satisfaction) to automate the generation of test cases.
Automated test generation poses urgent opportunities and challenges: there are
many technical challenges in achieving effective automation, there is a wealth of
opportunity in the different ways that automated testing can be used, and there
are serious implications for traditional certification regimes, and opportunities
for innovative ones; there are also opportunities for theoretical research in the
relationship between testing and verification, and for empirical inquiry into their
pragmatic combination.

In this position paper, I briefly survey the topics mentioned above, and sug-
gest research directions for the development and use of automated test generation
in verification.

2 Technology for Automated Test Generation

Much of the process of test execution and monitoring is automated in modern
software development practice. But the generation of test cases has remained
a labor-intensive manual task. Methods are now becoming available that can
automate this process.

A simple test-generation goal is to find an input that will drive execution of
a (deterministic, loop-free) program along a particular path in its control flow
graph. By performing symbolic execution along the desired path and conjoining
the predicates that guard its branch points, we can calculate the condition that
the desired test input must satisfy. Then, by constraint satisfaction, we can find
a specific input that provides the desired test case. This method generalizes to
find tests for other structural coverage criteria, and for programs with loops,
and for those that are reactive systems (i.e., that take an input at each step).
A major impetus for practical application of this approach was the realization
that (for finite state systems) it can be performed by an off-the-shelf model
checker: we simply check the property “always not P ,” where P is a formula
that specifies the desired structural criterion, and the counterexample produced
by the model checker is then the test case desired [2]. Different kinds of structural
or specification-based tests can be generated by choosing suitable P .

Using a model checker to generate tests in this way can be very straightfor-
ward in model-based development, where we have an executable specification
for the program that is in, or is easily translated to, the language of a model
checker: the tests are generated from the executable specification, which then
provides the oracle when these are applied to the generated program. There are
many pragmatic issues in the selection of explicit-state, symbolic, or bounded
model checkers for this task [3] and it is, of course, possible to construct special-
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ized test generators that use the technology of model checking but customize it
appropriately for this application.

The test generation task becomes more challenging when tests are to be
generated directly from a low-level program description, such as C code, when
the the path required is very long (e.g., when it is necessary to exhaust a loop
counter), when the program is not finite state, and when nondeterminism is
present.

When tests are to be generated directly from C code, or similar, it is natural
to adopt techniques from software model checking. These seldom translate the
program directly into the language of the model checker but usually first ab-
stract it in some way. Predicate abstraction [4] is the most common approach,
and discovery of suitable predicates is automated very effectively in the lazy-
abstraction approach [5]. Abstractions for test generation are not necessarily
the same as those used for verification. For the latter, the abstraction needs to
be conservative (i.e., it should have more behaviors than the concrete program),
whereas in the former case we generally desire that any test generated from the
abstraction should be feasible in the concrete program (i.e., the abstraction may
have fewer behaviors than the concrete program) [6]. This impacts the method
for constructing the abstraction, and the choice of theorem proving or constraint
satisfaction methods employed [7].

When very long test sequences are needed to reach a desired test target, it is
sometimes possible to generate them using specialized model checking methods
(e.g., those based on an ATPG engine [8]), or by generating the test incrementally
(so that each subproblem is within reach of the model checker). Some of the most
effective current approaches for generating long test sequences use combinations
of methods. For example, random test generation rapidly produces many long
paths through the program; to reach an uncovered test target, we find a location
“nearby” (e.g., measured by Hamming distance on the state variables) that has
been reached by random testing and then use model checking or constraint
satisfaction to extend the path from that nearby location to the one desired [9].
An alternative approach is to reduce the size of the model that represents the
program (it is easier to find longer paths in smaller models): this can be done
by standard model checking reductions such as slicing and cone of influence
reduction, and also by the predicate abstraction techniques mentioned above.

Traditional model checking technology must be extended or adapted when
the program is not finite state. In some cases, an infinite state bounded model
checker can be used (i.e., a bounded model checker that uses a decision proce-
dure for satisfiability modulo theories (SMT) [10] rather than a Boolean SAT
solver) [11]. In other cases, such as those where inputs to the program are com-
plex data structures (e.g., trees represented as linked lists), we can randomly
or exhaustively generate all inputs up to some specified size. Straightforward
approaches can be very inefficient (e.g., very few randomly generated list struc-
tures represent a valid red-black tree) and redundant (i.e., they generate many
inputs that are structurally “isomorphic” to each other), so that it is best to

3



view the search as a constraint satisfaction problem and to use technology from
that domain [12].

The test generation problem changes significantly when the program under
test is nondeterministic, or when part of the testing environment is not under
the control of the tester (e.g., testing an embedded system in its operational
environment). In these cases, we cannot generate test sequences independently
of their actual execution: it is necessary to observe the behavior of the system in
response to the test generated so far and to generate the next input in a way that
advances the purpose of the test. Thus, test generation becomes a problem of
controller synthesis; methods for solving this problem can use technology similar
to model checking but can seldom use an off-the-shelf model checker [13].

The problem becomes yet more difficult when the test environment includes
mechanical systems: for example, testing the shift controller of an automatic
gearbox in its full system context with a (real or simulated) gearbox attached.
Here, the test generation problem is escalated to one of controller synthesis in a
hybrid system (i.e., one whose description includes differential equations). This
is a challenging problem, but a plausible approach is to replace the hybrid system
elements of the modeled environment by conservative discrete approximations,
and then use methods for test generation in nondeterministic systems [14]. As
in the case of predicate abstraction, the notion of “conservative” that is suitable
for test generation may differ from that used in verification.

3 Selection of Test Targets

The previous section has sketched how test cases can be generated automati-
cally; the next problem is to determine how to make good use of this capability.
One approach uses test generation to help developers explore their emerging de-
signs [15]: a designer might say “show me a run that puts control at this point
with x ≤ 0.” This approach is very well-suited to model-based design environ-
ments (i.e., those where the design is executable), but is less so for traditional
programming. An approach that has proven useful in traditional programming
is random test generation at the unit level. In some programming environments,
each unit is automatically subjected to random testing against desired proper-
ties if these have been specified, or generic ones (e.g., no exceptions) as it is
checked in (Haskell QuickCheck [16] is the progenitor of this approach). A sim-
ilar approach can be used in theorem proving environments: before attempting
to prove a putative theorem, first try to refute it by random test generation [17]
(in PVS, this can also be tried during an interactive proof, if the current proof
goal looks intractable). These simple approaches are highly effective in practice.
More challenging tests can be achieved by exhaustive generation of inputs up
to some bounded size [18]. In Extreme Programming, tests take on much of the
rôle played by specifications in more traditional development methods [19], and
automated, incremental test generation can support this approach [20].

More traditional uses of testing are for systematic debugging, and for valida-
tion and verification. In tests developed by humans, the first of these is generally
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driven by some explicit or implicit hypotheses about likely kinds of bugs, while
the others are driven by systematic “coverage” of requirements and code.

One simple fault hypothesis is that errors are often made at the boundaries of
conditions (e.g., the substitution of < for ≤) and some automated test generators
target these cases [21]. Another hypothesis is that compound decisions (e.g.,
A∧B∨C) may be constructed incorrectly so tests should target the “meaningful
impact” [22] of each condition within the decision (i.e., each must be shown able
to independently affect the outcome).1 It turns out that these ideas are related:
boundary testing for x ≤ y is equivalent to rewriting the decision as x < y∨x = y
and then testing for meaningful impact of the two conditions. The classes of faults
detected by popular test criteria for compound decisions have been analyzed by
Kuhn [23] and extended by others [24,25].

Requirements- or specification-based testing is most easily automated when
the requirements or specification are provided in executable form—as is com-
monly done in model based development. Here, we can use the methods sketched
in Section 2 to generate tests that explore portions of the specified behavior. The
usual idea is that a good set of tests should thoroughly explore the control struc-
ture of the specification; typical criteria for such structural coverage are to reach
every control state, to take every transition between control states, and more
elaborate variants that explore the conditions within the decisions that control
selection of transitions (as in the meaningful impact criteria mentioned earlier).
Structural coverage criteria can be augmented by “test purposes” [26] that de-
scribe the kind of tests we want to generate (e.g., those in which the gear input
to a gearbox shift selector changes at each step, but only to an adjacent value), or
by predicates that describe relationships that should be explored (e.g., a queue
is empty, full, or in between) [27]. Test purposes and predicates are related to
predicate abstraction and can be used to reduce the statespace of the model, and
thereby ease the model checking task underlying the test generation. Generating
a separate test for each coverage target produces inefficient test sets that contain
many short tests and much redundancy, so recent methods attempt to construct
more efficient “tours” that visit many targets in each test [3, 27].

Requirements-based testing is more difficult when requirements are specified
as properties. One approach is to translate the properties into automata (i.e.,
synchronous observers), then target structural coverage in the automata.

4 Testing for Verification

Certification regimes for which testing is an important component generally
require evidence that the testing has been thorough. DO-178B Level A (which
applies to the highest level of flight-critical software in civil aircraft) is typical:
it requires MC/DC code coverage. The expectation is that tests are generated
by consideration of requirements and their execution is monitored to measure
coverage of the code. As the industry moves toward model-based development,
1 This use of decision and condition is the one employed in MC/DC, which is a testing

criterion of this kind.
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it can be argued that the requirements are represented by the models, and hence
that automated test generation from the model is a form of requirements-based
testing. One way to do this is by targeting MC/DC coverage in the model.
Heimdahl, George, and Weber did this for a model of a flight guidance system
developed by Rockwell, and then executed the tests on implementations that had
been seeded with errors [28]. They found that the autogenerated tests detected
relatively few bugs, and generally performed worse than random testing. Part
of the explanation for this distressing observation is that the model checking
technology underpinning the test generation is “too clever”: it generally finds
the shortest test to discharge any given goal, and these short tests often exploit
some special case and never reach the interesting parts of the state space. There
is hope that methods that generate tours through many test goals will do better
than those that target the goals individually, or that suitable test purposes may
guide the test generator into more productive areas of the state space, but these
ideas need to be validated in practice.

Another way in which testing has been employed for verification is in “con-
formance testing,” which is generally applied to distributed systems and proto-
cols. Given a formal specification and an implementation that purports to sat-
isfy it, conformance testing generates a series of tests such that any departure
from the specification will eventually be revealed (subject to various technical
caveats) [29]. Only a relatively small number of tests can be performed in prac-
tice, so the eventuality guarantee is of mainly theoretical interest, and the more
pragmatic concern is to try and arrange things so that tests generated early in
the series are effective at finding bugs.

There is relatively little work that combines automated testing with formal
verification. One attractive approach developed by Rusu uses test generation to
decompose the classical formal verification problem into smaller components [30].

5 Research Challenges

Testing is the dominant means of verification used today. Any research agenda
in software verification must include testing as a topic, and its roadmap must
suggest how the proposed research will improve testing, and how it can use it,
as well as how it may replace it in selected areas.

Automated test generation is an attractive topic in this area: it can reduce
the cost of testing and may improve its quality. And it is an “invisible” appli-
cation of formal methods and thus provides a good opportunity to introduce
this technology to new communities. Among the most eager adopters of this
capability are those in regulated industries where onerous testing requirements
constitute a significant part of overall development costs. As mentioned above,
there is some evidence that simply using the test coverage requirements as a
target for automated test generation may be a flawed strategy: coverage metrics
are intended to measure the thoroughness of human-generated tests, and do not
necessarily lead to good test sets when used in an inverted role as a specification
for the tests required.
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Thus, an urgent research topic is development of techniques for specifying
good test sets. There are two subtopics here: the role of the human tester will
change from construction of tests to specification of tests (the tests will be gen-
erated automatically from the specification), so we need ideas and techniques
for specifying tests (e.g., an extended notion of test purpose); second, we need
empirical data on what kinds of test specification produce good tests (i.e., those
that are effective in revealing errors). Because automated test generation per-
forms constraint satisfaction (either explicitly, or implicitly via model checking),
it is possible to specify test purposes using a recognizer rather than a generator,
and this creates attractive possibilities [31].

Most current methods and tools for automated test generation are limited
to unit tests. A second general research area is development of methods and
technology for other (arguably more important) testing tasks, such as integration
and system tests. At these levels, tests become interactive programs, and the
formal context becomes that of controller synthesis for nondeterministic, timed,
and hybrid systems. Abstraction is likely to be necessary, both for the system
under test and for its environment, and there are interesting questions regarding
the appropriate kinds of abstractions to use, and the theorem proving and model
checking methods that are most suitable for constructing and using them.

A third suggested general research area is the integration of testing with for-
mal methods of analysis and verification. Again, there are two subtopics: one is
technical integration—for example, how can testing help in formal specification
and proof (cf. QuickCheck-like methods for rapid refutation)—while the other
focuses on how the overall verification process can be decomposed into elements
that are effectively tackled by different means. There are proposals, for example,
to replace some unit test requirements in avionics by static analysis; yet testing
can address some issues (such as compiler bugs, which are a genuine problem)
that static analysis does not (unless applied to machine code), so the overall
web of argument in support of verification may become interestingly complex.
A companion paper in these proceedings outlines some of the issues in technical
integration of verification components [32], while the larger issues of “composi-
tional assurance,” in which the assurance case for a system is composed from
different kinds of verification evidence for its components, is only just beginning
to receive attention.
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13. Jéron, T., Morel, P.: Test generation derived from model-checking. [34] 108–121
14. Tiwari, A.: Abstractions for Hybrid Systems, Computer Science Laboratory, SRI

International, Menlo Park, CA. (2004) Combines several conference papers: avail-
able at http://www.csl.sri.com/~tiwari/new.pdf.

15. Ben-David, S., Gringauze, A., Sterin, B., Wolfsthal, Y.: PathFinder: A tool for
design exploration. In: Computer-Aided Verification, CAV ’2002. Volume 2404
of Lecture Notes in Computer Science., Copenhagen, Denmark, Springer-Verlag
(2002) 510–514

16. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: International Conference on Functional Progamming, Mon-
treal, Canada, Association for Computing Machinery (2000) 268–279

17. Berghofer, S., Nipkow, T.: Random testing in Isabelle/HOL. In: 2nd International
Conference on Software Engineering and Formal Methods, Beijing, China, IEEE
Computer Society (2004) 230–239

18. Sullivan, K., Yang, J., Coppit, D., Khurshid, S., Jackson, D.: Software assurance
by bounded exhaustive testing. In: International Symposium on Software Testing
and Analysis (ISSTA), Boston, MA, Association for Computing Machinery (2004)
133–142

8

http://www.csl.sri.com/~tiwari/new.pdf


19. Beck, K.: Test Driven Development: By Example. Addison-Wesley (2002)
20. Henzinger, T.A., Jhala, R., Majumdar, R., Sanvido, M.A.: Extreme model check-

ing. In: Verification: Theory and Practice: Essays Dedicated to Zohar Manna on
the Occasion of His 64th Birthday. Volume 2772 of Lecture Notes in Computer
Science., Springer-Verlag (2004) 332–358

21. Kosmatov, N., Legeard, B., Peureux, F., Utting, M.: Boundary coverage criteria for
test generation from formal models. In: 15th International Symposium on Software
Reliability Engineering (ISSRE’04), Saint-Malo, France, IEEE Computer Society
(2004) 139–150

22. Weyuker, E., Goradia, T., Singh, A.: Automatically generating test data from
a Boolean specification. IEEE Transactions on Software Engineering 20 (1994)
353–363

23. Kuhn, D.R.: Fault classes and error detection capability of specification-based
testing. ACM Transactions on Software Engineering and Methodology 8 (1999)
411–424

24. Tsuchiya, T., Kikuno, T.: On fault classes and error detection capability of
specification-based testing. ACM Transactions on Software Engineering and
Methodology 11 (2002) 58–62

25. Okun, V., Black, P.E., Yesha, Y.: Comparison of fault classes in specification-based
testing. Information and Software Technology 46 (2004) 525–533
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