
Model-Checking Software Using Precise Abstractions

Marsha Chechik and Arie Gurfinkel

Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada.

Email:
�
chechik,arie � @cs.toronto.edu

1 Introduction

Formal verification techniques are not yet widely used in the software industry, perhaps
because software tends to be more complex than hardware, and the penalty for bugs is
often lower (software can be patched after the release). Instead, a large amount of time
and money is being spent on software testing, which misses many subtle errors, espe-
cially in concurrent programs. Increased use of concurrency, e.g., due to the popularity
of web services, and the surge of complex viruses which exploit security vulnerabilities
of software, make the problem of creating a verifying compiler for production-quality
code essential and urgent.

Many formal techniques can effectively analyze models of software. However, ob-
taining these models directly from the program text is non-trivial. Not only are there lan-
guage issues (pointers, dynamic memory allocation, object-orientation, dynamic thread
creation) to deal with, but the most important problem is automatically determining the
level of abstraction for creating such a model: it should be simple enough to analyze
and yet detailed enough to be conclusive on the properties of interest. Thus, we believe
that part of the challenge of creating a verifying compiler is creation of fully automated
light-weight verification and validation techniques which help detect bugs and yet scale
to handle large complex software. Furthermore, the techniques should be supported
by a methodology that enables developers to pose questions about correctness of their
programs and effectively understand the results of the analysis.

Software model-checking [BPR01,VHB � 03] checks the program by either forcing
it to “run” all of its behaviours up to a certain number of steps, or by static analysis. Pi-
oneered by Microsoft’s SLAM project, software model-checking has been successfully
applied to checking Windows device drivers [BCLZ04], demonstrating that effective
verification of single-threaded C programs is possible.

We believe that the existing techniques based on the CEGAR framework (see Fig-
ure 1) that use a theorem-prover for constructing models and a model-checker for ex-
ploration is a reasonable way to go for analyzing realistic programs. However, such
methods should be enhanced in a number of directions if our goal is to create a truly
effective program verifier. In Section 2, we describe our existing work on creating better
abstractions. In Section 3, we discuss two approaches that we believe are essential for
scaling automated analysis: reuse (via compositional analysis and regression verifica-
tion) and combining static and dynamic reasoning. We conclude in Section 4.



Fig. 1. Abstraction-refinement cycle.

(a)

int x;
x = 0;
if (x > 0)

{x++}
else

{x--}
P1:

(b)

;
if (*)

{;}
else

{;}
P1:

Fig. 2. (a): a C program where line ��� is not reachable; (b): an abstraction of (a) without predi-
cates.

2 Creating Precise Abstractions

Paraphrasing Reps and Sagiv [RSW04], we need abstractions that allow lack of preci-
sion and still enable reasoning. Thus, an abstraction is “good” if it can identify whether
the analysis of a property of interest is conclusive (i.e., when the property is true/false
in abstract model, it is true/false in the concrete one). With such an abstraction, we can
trust all of the answers except those that explicitly indicate “no information”. Experi-
ence in static analysis [RSW04] showed that a logic with values other than just True and
False can be used effectively to create abstractions that preserve both truth and falsity:
when a property is inconclusive in the abstraction, the analysis simply returns a special
value Maybe.

Traditional model-checking approaches already build such abstractions. For exam-
ple, suppose we are interested in checking whether ��� is reachable in a program in
Figure 2(a). The initial abstraction for this program is just its control-flow graph, shown
in Figure 2(b), and it is clear that ��� is reachable by every path, i.e., regardless of the
evaluation of the condition of the ��� statement. However, since the conditions is “un-
known”, i.e., it is neither True nor False, it is not possible to convert it into a boolean
model, expected by classical model-checking algorithms. Here, two choices are avail-
able. The standard approach, employed by such model-checkers as SLAM and BLAST,
is to treat “unknown” as “non-deterministic”, i.e., as either True or False, which looses
some of the information available in the abstraction, but allows the use of classical
model-checking algorithms. An alternative approach is to extend the analysis to par-

2



kn
ow

le
dg

e

truth

TF

(a) 

M kn
ow

le
dg

e

truth(b) 

D

TF

M

���
�

��
���� ��	
���� �

Fig. 3. Truth order cs. knowledge order of (a): Kleene and (b): Belnap logics.

tial models that can represent “unknown” explicitly. In fact, several such alternatives,
based on Kleene logic (see Figure 3(a), where the third value stands for “maybe” or “un-
known”), have been proposed over the years (e.g. [LT88,BG99,CDEG03]), but have not
found their way into software model-checking practice because it is generally believed
that they cannot be implemented efficiently. Thus, the additional power of already avail-
able rich abstractions remains untapped. Instead, the classical analysis needs to know
exactly which execution of the ��� statement in the example in Figure 2(b) is feasible,
which leads to generating an additional predicate and a refined abstraction. Clearly, this
can and should be avoided.

To show that the additional reasoning power can be obtained without sacrificing per-
formance, we have recently built a prototype software model-checker YASM [GC05]
which implements the CEGAR framework using Belnap logic. This logic, shown in
Figure 3(b), extends Kleene logic with another value, which we use to improve pre-
cision of our models. The remainder of this section comments on how our approach
differs from the classical one, phase by phase.

The abstraction phase builds an abstract model, using a theorem-prover (YASM uses
CVCLite [BB04]) to approximate the effect of each statement by a propositional for-
mula over the available predicates. Abstracting each line of the program can take up to���

calls to the theorem prover, where � is the current number of predicates [GS97,BR01].
This number can be minimized by the application of constraint-satisfaction algorithms
[Dec03], and we are currently experimenting with several CSP techniques to improve
the performance of our tool. Overall, our abstraction phase is quite standard and is in-
dependent of our use of Belnap logic for the analysis.

For the model-checking phase, our current implementation uses a modification of
our existing model-checker � Chek [CDG02] which can naturally analyze models ex-
pressed in Belnap and Kleene logic. Just as other implementations of the CEGAR
framework, we extended � Chek’s algorithms to exploit the control-flow graph of the
program. We also discovered that it is relatively straightforward to incorporate and ex-
tend existing advances in software model-checking technology, such as interpolant-
based predicate discovery [HJMM04] and lazy abstraction [HJMS02], into our frame-
work.

Multi-valued witnesses and counterexamples produced by � Chek correspond to
partial proofs of correctness [GC03]. Thus, in the refinement phase, it is not necessary to
check whether the execution produced by model-checking is feasible. Instead, we sim-
ply refine abstractions that produce the Maybe answer, by extracting new predicates for
refinement from such partial proofs. Existing SLAM-like techniques can handle safety

3



properties only (e.g., � is always positive, null pointer is never dereferenced, an asser-
tion is always satisfied), partly because the traditional CEGAR framework depends on
the linearity and the finiteness of generated counterexamples. Our approach can work
regardless of the structure of the property, and thus can be applied to a larger set of
properties, such as liveness (e.g., a request will be eventually fulfilled), as well as to
programs with explicitly-defined fair computations.

The current version of the tool can check properties of C programs with complex
language features such as structures, pointers, and recursion. We have also implemented
lazy and eager abstraction and a limited form of non-determinism, which will lead
to the analysis of concurrent programs. Our experience showed that the introduction
of additional logic values does not reduce the feasibility of the analysis. In fact, the
analysis remains as feasible as the classical one while making it possible to effectively
reason about a larger class of properties.

3 Other Approaches to Effective Software Model-Checking

A verifying compiler should be able to effectively compile arbitrarily large and complex
programs, from device drivers which can be effectively analyzed by state-of-the-art
tools, to multi-user multi-threaded distributed systems. Thus, the problem of “scaling
up” of software model-checking will remain pressing, and in this section we discuss
two directions which we believe are essential for tackling this problem.

3.1 Reuse: Compositional and Regression Verification

Complexity of software is often addressed by decomposing a system into components.
Thus, one way to improve scalability of a verification technique is by making it com-
positional. Over the years, various “assume-guarantee” techniques have been proposed
to partition the verification effort across system components, and these can be adopted
to reasoning about software. For example, to analyze a given thread, we can generate
a most general environment that is sufficient to ensure that the desired property holds,
and then check that the combination of other threads satisfies this environment. We also
propose to apply symmetry reduction to build abstractions of concurrent systems with
several similar components [WGC05]. We believe that a similar approach can be taken
to facilitate the analysis of component-based and parameterized systems.

A major reason for SLAM’s ability to analyze recursive programs is its composi-
tional approach to processing functions. Instead of handling function calls by inlining,
SLAM treats each function as a component, analyzes it once, and uses the computed
function summary in the rest of the analysis.

However, the traditional notion of a component (i.e., a function, a module, a library,
a thread), is not sufficient to effectively capture the complexity of software. This is espe-
cially highlighted by the recent popularity of non-traditional decomposition techniques
such as aspect-based programming [EFB01].

An approach complementary to compositional verification is regression verification.
As software gets changed frequently and needs to be “recompiled” (and thus reverified),
the goal of this approach is to determine how much of the modified program needs to

4



be reverified and reusing results of previous analyses whenever possible. In particular,
it is necessary to determine when previous abstractions can be reused in checking the
modified program. Further, changes in software often affect a large number of compo-
nents, and we believe that the re-verification effort must be proportional to the amount
of change, not to the number of affected components.

The lack of support for regression verification is particularly evident in the current
applications of the CEGAR framework. In this framework, the abstraction of the pro-
gram is constructed incrementally, with each new abstraction being a “small change”
of the old. However, with the notable exception of [HJMS02,GC05], this is not taken
into account during the verification phase. Early experience with regression verification
shows a lot of promise. For example, Henzinger et al. [HJMS04] have demonstrated
an almost “on-line” verification of some properties, where the program is verified as
it is being written. Our own experience [GC05] shows that program analysis using
Belnap logic that precisely identifies which results of a verification can be trusted, is
particularly well suited to localizing the effort of regression verification. Moreover, our
current work on merging [UC04] allows us to combine function and other component
summaries obtained during different analysis passes through the program being modi-
fied.

3.2 Combining Static and Dynamic Approaches

The goal of static analysis is to establish a property of all executions of a program. In
theory, it promises to completely eliminate dynamic analysis such as testing and runtime
monitoring; moreover, this has been possible in practice, for analyzing relatively small
components such as device drivers. We believe that static techniques alone may not
scale to reasoning about large distributed programs that are routinely being built today,
and may need to be supplemented by a careful application of dynamic analysis.

There are numerous ways in which static and dynamic analysis can be combined.
For example, program execution can supplement theorem-proving in construction of
abstract models [KGC04]: if the program reaches the desired state, then the value of the
transition should be True; otherwise. no information is available.

Another approach is to combine results of testing to help navigate static analysis
towards a possible error. We are currently exploring a variation of this approach by
building an abstract model from regression test suites. Such suites are available with
most large-scale software systems and can be thought of as detailed scenarios describing
the system. We can combine these into partial behavioural models [UC04,WS00] to use
in formal analysis.

4 Position

In this paper, we briefly discussed our position on using software model-checking for
creating a verifying compiler. We are firm believers in automated symbolic verification
which combines static and dynamic analyses, theorem-proving and model-checking,
and think such techniques can be effectively extended to reasoning about complex soft-
ware systems. We also believe that capturing the distinction between “the abstraction

5



is not precise” and non-determinism is a key to pushing symbolic approaches towards
reasoning about concurrency.

Currently, the automated verification research community has several competing
approaches to analyzing software. We hope that bringing us together will facilitate tool
sharing, so we can evaluate improvement of our tools against the state-of-the-art. We
also hope that we can create and share a set of agreed-upon “requirements” for a ver-
ifying compiler. These requirements can take a form of a benchmark suite combining
programs of varying complexity and size, with different language features and different
correctness criteria.

References

[BB04] C. Barrett and S. Berezin. “CVC Lite: A New Implementation of the Cooperating
Validity Checker”. In Proceedings of 16th International Conference on Computer
Aided Verification (CAV’04), volume 3114 of LNCS, pages 515–518, Boston, MA,
July 2004. Springer.

[BCLZ04] T. Ball, B. Cook, S.K. Lahiri, and L. Zhang. “Theorem Proving for Predicate Ab-
straction Refinement”. In Proceedings of the 16th Conference on Computer-Aided
Verification (CAV’04), July 2004.

[BG99] G. Bruns and P. Godefroid. “Model Checking Partial State Spaces with 3-Valued
Temporal Logics”. In Proceedings of Proceedings of 11th International Conference
on Computer-Aided Verification (CAV’99), volume 1633 of LNCS, pages 274–287,
Trento, Italy, 1999. Springer.

[BPR01] T. Ball, A. Podelski, and S. Rajamani. “Boolean and Cartesian Abstraction for Model
Checking C Programs”. In Proceedings of 7th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’01), volume 2031
of LNCS, pages 268–283, April 2001.

[BR01] T. Ball and S. Rajamani. “The SLAM Toolkit”. In Proceedings of 13th International
Conference on Computer-Aided Verification (CAV’01), volume 2102 of LNCS, pages
260–264, July 2001.

[CDEG03] M. Chechik, B. Devereux, S. Easterbrook, and A. Gurfinkel. “Multi-Valued Sym-
bolic Model-Checking”. ACM Transactions on Software Engineering and Methodol-
ogy, 12(4):1–38, October 2003.

[CDG02] M. Chechik, B. Devereux, and A. Gurfinkel. “
�

Chek: A Multi-Valued Model-
Checker”. In Proceedings of 14th International Conference on Computer-Aided Ver-
ification (CAV’02), volume 2404 of LNCS, pages 505–509, July 2002.

[Dec03] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[EFB01] T. Elrad, R. Filman, and A. Bader. “Aspect-Oriented Programming: Introduction”.

Communications of the ACM, pages 29–32, October 2001.
[GC03] A. Gurfinkel and M. Chechik. “Proof-like Counterexamples”. In Proceedings of 9th

International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’03), volume 2619 of Lecture Notes in Computer Science, pages
160–175, April 2003.

[GC05] A. Gurfinkel and M. Chechik. “Yasm: Model-Checking Software with Belnap Logic”.
Technical Report 470, University of Toronto, April 2005.

[GS97] S. Graf and H. Saïdi. “Construction of Abstract State Graphs with PVS”. In O. Grum-
berg, editor, Proceedings of the 9th International Conference on Computer-Aided Ver-
ification (CAV’97), volume 1254 of LNCS, pages 72–83, Haifa, Israel, 1997. Springer.

6



[HJMM04] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. “Abstractions from
Proofs”. In Proceedings of 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2004), pages 232–244, Venice, Italy, January 2004.
ACM.

[HJMS02] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. “Lazy Abstraction”. In Pro-
ceedings of 29th SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL 2002), pages 58–70, Portland, Oregon, January 2002. ACM.

[HJMS04] T. A. Henzinger, R. Jhala, R. Majumdar, and M. Sanvido. “Extreme Model Check-
ing”. In Verification: Theory and Practice, volume 2772 of LNCS, pages 332–358.
Springer-Verlag, 2004.

[KGC04] D. Kroening, A. Groce, and E. Clarke. ”Counterexample Guided Abstraction Refine-
ment via Program Execution”. In Proceedings of International Conference on Formal
Engineering Methods, pages 224–238, November 2004.

[LT88] K.G. Larsen and B. Thomsen. “A Modal Process Logic”. In Proceedings of 3rd
Annual Symposium on Logic in Computer Science (LICS’88), pages 203–210. IEEE
Computer Society Press, 1988.

[RSW04] T.W. Reps, M. Sagiv, and R. Wilhelm. “Static Program Analysis via 3-Valued Logic”.
In Proceedings of 16th International Conference on Computer-Aided Verification
(CAV’04), volume 3114 of LNCS, pages 15–30, 2004.

[UC04] S. Uchitel and M. Chechik. “Merging Partial Behavioural Models”. In Proceedings
of 12th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, pages 43–52, November 2004.

[VHB
�

03] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. “Model Checking Programs”.
Journal of Automated Software Engineering, 10(2), April 2003.

[WGC05] O. Wei, A. Gurfinkel, and M. Chechik. “Identification and Counter-Abstraction for
Full Virtual Symmetry”. In Proceedings of 13th Advanced Research Working Con-
ference on Correct Hardware Design and Verification Methods (CHARME’05), pages
1–16. Springer, September 2005. (to appear).

[WS00] J. Whittle and J. Schumann. “Generating Statechart Designs from Scenarios”. In
Proceedings of 22nd International Conference on Software Engineering, pages 314–
323, May 2000.

7


