
Tools for Formal Software Engineering

Zhiming Liu1 and R. Venkatesh2

1 International Institute for Software Technology
United Nations University, Macao SAR, China

Z.liu@iist.unu.edu
2 Tata Research and Design Development Centre, Pune, India

r.venky@tcs.com

Abstract. We propose a collaboration project to integrate the research effort and
results obtained at UNU-IIST on formal techniques in component and object sys-
tems with research at TRDDC in modelling and development of tools that support
object-oriented and component-based design. The main theme is an integration of
verification techniques with engineering methods of modelling and design, and
an integration of verification tools and transformation tools. This will result in
a method in which acorrectprogram can be developed through transformations
that are either proven to be correct or by showing that the transformed model can
be proven correct by a verification tool. Transformations include those for model
construction and those that invoke verification tools.

1 Formal Software Engineering and the Grand Challenge

The goal of the Verifying Compiler Grand Challenge [14] is to build a verifying com-
piler that

“uses mathematical and logical reasoning to check the programs that it com-
piles.”

This implies that “a program should be allowed to run only if it is both syntactically and
semantically correct” [28]. To achieve this goal, the whole computing community have
to deal with a wide range of issues and to overcome a great deal of difficulties, among
which are [13]

1. arriving at automated, or even manual, procedures of abstraction that enables a
compiler to work in combination with different program development and testing
tools,

2. studying what, where, when and how the correctness properties, i.e. assertions and
annotations, are identified and specified,

3. identifying properties that can be verified compositionally, and designing specifi-
cation notations and models to support more compositional specification, analysis
and verification.

4. making tools that are scalable even with specified correctness criteria,

In our view, theories and techniques are a long way from being able to solve the
first three problems, and solutions to these problems will be useful in dealing with the
fourth problem.

In this position paper, we propose the developmentFormal Software Engineering
as a method to develop large software systems using engineering methods and tools
that are verifiable. We propose formal modelling of requirements and design, and the
automatic generation of code to achieve this. We believe that this effort will contribute
towards a solution to the problems stated earlier. In particular, we propose a collabora-
tive project on software development technology and tools that helps incorrectness by
construction[28].

1.1 The state of the art in software engineering

Software engineering is mainly concerned with the systematic development of large and
complex systems. To cope with the required scale traditional software engineers divide
the problem along three axes - development phases, aspects and evolutions. The de-
velopment phases are - Requirements, Design and Implementation. Each development
phase is divided into different aspects, such as:

– static data model, control flow or processes and operations in the requirements
phase;

– design strategies for concurrency, efficiency and security in the design phase. These
strategies are commonly expressed as design patterns [6]; and

– databases, user interface and libraries for security in the implementation phase.

The third axis is that of system evolution [15, 16] where each evolutionary step en-
hances the system by iterating through the requirements - implementation cycle. Unfor-
tunately all aspects are specified using informal techniques and therefore this approach
does not give the desired assurances and productivity.

The main problems are:

– Since the requirements description is informal there is no way to check for its com-
pleteness, often resulting in gaps.

– The gaps in requirements are often filled by ad-hoc decisions taken by program-
mers who are not qualified for the same. This results in rework during testing and
commissioning.

– There is no traceability between requirements and the implementation, making it
very expensive to accommodate changes and maintain the system.

– Most of the available tools are for project management and system testing. Al-
though these are useful, they are not enough to ensure the semantic alignment of
the implementation w.r.t a requirements specification and semantic consistency of
any changes made in the system.

1.2 The state of the art of formal methods

Formal methods, on the other hand, attempt to complement informal engineering meth-
ods by techniques for formal modelling, specification, verification and refinement [30,

7]. In principle, a formal system development starts with an abstract specification and
transforms it into a program through a number of refinement steps. The method is sup-
ported by a sound logical framework but it is only suited for the development of rel-
atively small programs. In practice, only some significant properties of a part of the
system are formally specified and verified for an abstract model of the implementa-
tion by a model checking tool or a theorem prover or even by hand. It is still a great
challenge to scale up formal methods to industry scale because of the problems listed
below.

– Each development is usually a new development with very little reuse of past de-
velopment.

– There is no clear separation between requirements, design and implementation
making it difficult for domain experts, architects and programmers to collaborate
towards a single solution.

– Because of the theoretical goal of completeness and independence, refinement cal-
culi provide rules only for a small change in each step. Refinement calculi there-
fore do not scale up in practice. Data refinement requires definition of a semantic
relation between the programs (their state space) and is hard to be applied system-
atically.

– Given low level designs or implementations it is not easy for software engineers to
build correct and proper models that can be verified by model checking tools.

– There is no explicit support for productivity enhancing techniques such as component-
based development or aspect-oriented development.

Both formal methods and the methods adopted by software engineers are far from meet-
ing the quality and productivity needs of the industry, which continues to be plagued by
high development and maintenance costs. Complete assurance of correctness requires
too much to specify and verify and thus a full automation of the verification is in feasi-
ble. However, recently there have been encouraging developments in both approaches.
The software engineering community has started using precise models for early require-
ment analysis and design [26, 5]. Theories and methods for object-oriented, component-
based and aspect-oriented modelling and development are gaining the attention of the
formal methods community. There are attempts to investigate formal aspects of object-
oriented refinement, design patterns, refactoring and coordination [3, 12, 4, 20].

1.3 Objective

The aim of this project is to combine the strengths of software engineering techniques
and formal methods thus enabling the development of systems that have the assurances
possible due to formal methods and productivity and scale-up achievable by methods
adopted by software engineers. This will be achieved by

1. Identifying development steps and precise artifacts for each step.
2. Stating correctness criteria for each artifact.
3. Building tools that will verify the correctness of given artifacts or generate artifact

guaranteeing correctness.

2 Formal Modelling of Complex Systems

This section gives a brief outline of the technique and solution to be investigated by this
project. The techniques are explained using a simple example of a library system, that
maintains a collection of books. Members belonging to the library borrow and return
books. In order to keep the explanation simple and readable we have not been rigorous
in the specification of the library system. In [25], a Point of Sale (POST) system was
formally developed, including a C# implementation.

2.1 Requirements modelling

For an object system, the development process begins with the specification of func-
tional requirements. Functional requirements of a system consists of three aspects - the
state, a set of operations through which external agents may interact with the system
and a set of global properties that must be satisfied by the state and operations. This
can be modelled as a tripleRM = 〈S, O, I〉 whereS is a model of the state,O is a set
of operations that modify the state andI is a set of global invariants.O is expressed a
pre- post-condition pair [20]. A requirements model is consistent if each operation inO
is consistent with the state model and preserves the global invariant. The model can be
used to specify both object and component systems. The model can be further enhanced
by adding descriptions of interaction protocols with the environment [11, 9], timing as-
pects, features of security, etc. A multi-view and multi-notation modelling language,
such as a formalized subset of the Unified Modelling Language(UML) [27, 12], can
be used to specify this model and analyzed for inconsistencies using model-checking
techniques as demonstrated in [29]. The difficulty is in carrying out the analysis incre-
mentally, a small number of use cases at a time that only involve a small number of
domain classes [22].

Library requirements The state space of the library system is represented by the tu-
ple 〈Shelf, Book, Member, Loan : Book× Member, isIn : Book× Shelf〉 where,Book,
MemberandShelf are set of books, members and shelves in the library.Loan is a set
of tuples representing the books that have been currently loaned to members. The asso-
ciation isIn is a set of tuples representing books that are currently on some shelf. This
state space corresponds to a UML diagram and can be formalized as a class declartion
section of an OO program [22, 12].

The set of operations will be{Borrow(Member, Book), Return(Member, Book)}.
These operations are identified from the use cases [18, 22]. TheBorrow operation can
be described as

signature : Borrow(S, S′ : State, b : Book, m : Member)
pre-condition: ¬∃m1 : Member• 〈b, m1〉 ∈ S.Loan
post-condition: S′.Loan= S.Loan∪ 〈b,m〉 ∧ S′.isIn = S.isIn− 〈b,m〉

Returncan be defined similarly.

A sample invariant isBookInvariant, which states that every book in the library is
either on the shelf or loaned to a member. This can be stated as follows.

BookInvariant(S : State)
def
= ∀b : S.Book• ∃m : Member• 〈b, m〉 ∈ S.Loan∧

¬∃s : Shelf• 〈b, s〉 ∈ S.isIn
∨ ¬∃m : Member• 〈b, m〉 ∈ S.Loan∧
∃s : Shelf• 〈b, s〉 ∈ S.isIn

More formal details about formalisation of a use-case mode and its consistency relation
with a class model (i.e. the state space) can be found in [18, 22].

2.2 Design

Design involves transforming the requirements model of a system to a model for a
platform or family of platforms and in the process imparting some non-functional prop-
erties such as - support for concurrent or parallel execution, performance and usability.
The platform may be modelled by a tuple,〈Sp, Op〉 whereSp is a meta-model of the
platform state andOP is a set of platform operations which maybe combined using a
set of available operators. Given a platform model a system is designed by transforming
requirements state model,Sto a design state modelSd that is an instance of the platform
state meta-model,Sp and transforming each operationo∈ O to an operationod, which
is expressed as a composition of operations inOP . The design step also specifies a set
of design invariants,Id that the design operations must preserve. Thus the design model
is a triple,〈Sd, Od, Id〉 whereOd is the set of all transformed operations and the design
process consists of two transform functions〈Ts, To〉 whereTs : S → Sd is the state
transformation function andTo : O → Od is the operations transformation function. A
design is correct if the two transformation functions are consistent that is the diagram
in figure 1 commutes and the design operations preserve the design invariants.

s1
 s2

sd1
 sd2

Ts
 Ts

o

Td(o)

Fig. 1. Design Transformations

Library design Assume the library system is to be implemented on a platform con-
sisting of a relational database supporting concurrent access. The platform state can be
modelled by the tuple

〈ShelfTable:Table, BookTable:Table, MemberTable:Table, BookShelfTable:Table,
BookMemberTable:Table, Process, hasLock:Table× Process〉

where,ShelfTable, BookTableandMemberTableare relational tables. The tablesBook-
ShelfTableand BookMemberTableare database tables having two columns each and
store the relationsisIn andLoan. BookShelfTablehas columns book and shelf andBook-
MemberTablehas columns book and member.hasLockrepresents the tables that have
been locked by a process. The platform operations are

{Select, Insert, Delete, Abort, Commit}

These can be combined using the operators{; , :=, if, =, ! =} where ’;’ is the sequenc-
ing operator, ’:=’ is the assignment operator, ’if’ is the normal if, ’=’ and ’!=’ are the
equality and inequality comparison operators. The platform operations have the follow-
ing informal semantics.

– Selectreturns a row from the given table satisfying the given condition.
– Insert andDeleteare updating operations To perform such an operation, a lock is

first produced on the table that is to be updated and then performs the appropriate
operation to insert or delete of a row. The operation returnstrue if the update
is successful and returnsfalse if a lock cannot be obtained or the update is not
successful for some reason.

– Abort rolls back all the changes made so far by this operation and releases all the
locks obtained and exits the operation.

– Commitreleases all the locks that have been taken by this operation.

As part of the design step we define a total order′ <′, on the tables. For the library
system the order can be as given by the tuple above. The design step transforms each
operation in the requirements specification into a corresponding operation in the design
specification such that the updates are ordered preserving the total order on the tables
thus ensuring that there are no deadlocks.

The specification for Borrow will get transformed to

Borrow(b : Book, m : Member)
bm := Select from BookMemberTable

where BookMemberTable.book = b;
if (bm != nil) then Abort;
bs := Select from BookShelfTable

where BookShelfTable.book = b;
b := delete bs from BookShelfTable;
if (b = false) then Abort;
b := insert (b, m) into BookMemberTable;
if (b = false) then Abort; Commit;

A function that automatically transforms all library requirements specification to the
a design specification implementing the chosen design strategy can be written. The cor-
rectness of the transformation as required by figure 1 can be shown. In addition deadlock
freedom can also be shown. Since the design has been implemented as a transformation
we will not have to prove correctness of the design specification for each operation,
instead we prove correctness of the transformation function.

Design PatternsDifferent systems adopt similar design transformation functions. There-
fore the process of formal design can be scaled up by abstracting away from individual
design transformation functions to a design pattern. A design pattern is a meta-function
that maps a requirements model to a design transformation function for that require-
ments model. A design pattern is correct if the mapped design functions are correct
as described above. Design patterns can be proved correct independent of the require-
ments model making them scalable. In the presence of design pattern a design step will
involve selecting and applying the appropriate design patterns.

Fotr the Library example, the design strategy of imposing a total order on the tables
can be abstracted out into a transformation function. The transformation function takes
the total order and a requirements specification as input and transforms the require-
ments of an arbitrary system into a corresponding design specification. MasterCraft [1]
implements a few such design patterns for some select platforms and design strategies.
MasterCraft however does not support formal specification of these design patterns. If
implemented as a design pattern the atomicity preservation and deadlock freedom will
not have to be proved for each application of the transformation. All we will need to
show is that for a given application there exists a total order which can be conformed
to while performing the transformation. We believe that is is achievable in the frame-
owrk of rCOS. The General Responsibilibity Assignment Software Pattern (GRASP)
[17] are formalized as refinment rules inrCOS [12]. More design patterns and pattern-
directed refactoring are also studied and applied to the case study POST [2, 25].

3 Research Problems

The previous section presented an overview of a proposed method for formal devel-
opment of large scale systems. To realize this method, we first need to define it more
formally. We aim at a logically sound and systematic method (that we are tempted to
call a formal engineering method) and tools that themselves are provably correct for
supporting the method. The method includes:

1. A language and a logic for specifying and reasoning about a system at different
levels of abstractions.The main task is to develop a notation for describing each
aspect of correctness of a model. This will allow a developer to split a model of
a system into several aspects making it more manageable. This is important for
tool development too. The notation for a particular aspect should be expressive
enough for describing all the concerns about that aspect. However, overlapping
features among different notations should be kept to a minimum else, problems of
inconsistency and integration will become overwhelming3.
The logic should provide a sound link among the different notations to deal with
the problems of model consistency and integration. It should support compositional
reasoning about the whole model by reasoning about the sub-models of the aspects.
Different verification techniques and tools maybe applied to models of different
aspects of functionality, interaction and structure of the system.

3 This is a serious problem in the application of UML.

2. A Language and logic for specifying the transform functions and reasoning about
correctness.The language should preferably be composable. That is, it should
be possible to specify various design transformations independently and compose
them to get a design from requirements. The techniques and tools will include for-
mally proved pattern-directed transformations of specifications to scale up the clas-
sical calculi of refinement. We will also investigate the use of model checking and
static analysis techniques and tools for consistency and analysis of properties of
models. For specification and analysis of coordination among components, simu-
lation techniques and tools can be used. Transformation of different sub-models
may need different verification techniques and tools. Data refinements will be real-
ized by structural transformations following design patterns that are scaled up from
object-oriented design.

3. Automatic code generators that implement the implementation functions for vari-
ous platforms.Refactoring transformation of designs and implementations will be
studied and implemented in the tool support.

4. Techniques and tools for domain-specific languages and their programming(such
as web-based service and transaction system based on internet).

The main theme of the project is to integrate formal verification techniques and
tools with design techniques and tools of model (or specification) transformations. Ver-
ification and transformation will work complementary to ensure the correctness of the
resultant specification. The design techniques and transformation tools are essential in
the development to transform the requirements specification to a model that is easy to
be handled with the verification techniques and tools. The design and transformation
have to be carried interactively between the designer and the tool. Verification tools can
be also invoked during a transformation.

This project will be conducted in a close collaboration between UNU-IIST and
TRDDC. UNU-IIST is particularly strong in theories and techniques for program mod-
elling, design and verification, and TRDDC is the largest industry research development
and design centre in India. We will investigate how the research results at UNU-IIST
in theories and techniques of program modelling, design and verification can be used
in the design of software development tools at TRDDC. A separate position paper by
UNU-IIST is also presented at this conference [13].

Related Work at UNU-IIST and TRDDC

TRDDC and UNU-IIST have been approaching the above problem from two different
ends. TRDDC has expertise in software engineering techniques and has been research-
ing this area for several years now. These efforts have resulted in MasterCraft [1], a tool
that generates code for different platforms from design specifications. Current research
activities at TRDDC include graph-based languages for specifying requirements [29]
and transformations. The requirements group has successfully used model checking to
verify correctness of requirements of a few projects. The work on transformation spec-
ifications has resulted in a proposal as a standard in response to an OMG request. The
proposal is in an advanced stage of acceptance.

UNU-IIST has been working on formalizing object-oriented development. This
work has resulted in a relational model for object-oriented design and an associated
refinement calculus [12, 21, 10]. The refinement calculus supports incremental and it-
erative development [22]. The model is current being extended to support component-
based development [20, 11, 9]. Initial progress have been made in experimental develop-
ment of tool support [19, 24]. Promising results have been achieved in unifying different
verification methods [8, 23].

4 International Collaboration

UNU-IIST has now joined as a partner of ARTIST II and the collaboration with the
other partners, such as Aalborg University (Denmark) and Uppsala University (Sweden)
on component-based development and verification will become closer. UNU-IIST also
has a long tradition of collaboration with the University of Macau, Peking University,
Nanjing University and Software Institute of the Chinese Academy of Sciences, Oxford
University, and the University of Leicester.

TRDDC too is involved in a lot of collaborative work. The list of currently active
collaborators include - University of Aalborg, Denmark, King’s College, London, Uni-
versity of Illinois at Urbana Champaign, Indian Institute of Science, Bangalore, Indian
Institute of Technology, Mumbai and University of Wisconsin, Milwaukee.

References

1. Mastercraft. Tata Consultancy Services. http://www. tata-mastercraft.com.
2. Q. Long andJ. He and Z. Liu. Refactoring and pattern directed refactoring : A formal per-

spective. Technical Report UNU-IIST Report No. 318, UNU/IIST, P.O. Box 3058, Macao
SAR China, 2005. http://www.iist.unu.edu/newrh/III/1/page.html.

3. P. Borba, A. Sampaio, and M. Cornélio. A refinment algebra for object-oriented program-
ming. In L. cardelli, editor,Proc. ECOOP03, LNCS2743, pages 457–482. Springer, 2003.

4. M. Broy. A theory for requirements specification and architecture design of multi-functional
software systems. In Z. Liu and J. He, editors,Mathematical Frameworks for Component
Software – Models for Analysis and Synthesis. World Scientific, To appear.

5. M. Fowler. Invited talk: What is the point of UML. In P. Stevens, J. Whittle, and G. Booch,
editors,Proc. UML 2003, Lecture Notes in Computer Science 2863. Springer, 2003.

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns, Elements of Reusable
Object-Oriented Software. Addlison Wesley, 1994.

7. J.A. Hall. Seven myths of formal methods.IEEE Software, 7(5):11–19, 1990.
8. J. He. Link simulation with refinement. InProc of The 25th anniversary of CSP, 2004.
9. J. He, X. Li, and Z. Liu. Component-based software engineering – the need to link methods

and their theories. In H.V. Dang and M. Wirsing, editors,Proc. of ICTAC05, International
Colloquium on Theoretical Aspects of Computing, Lecture Notes in Computer Science 3722,
pages 72–97. Springer, 2005.

10. J. He, Z. Liu, and X. Li. rCOS: A refinement calculus for object systems. Techni-
cal Report UNU-IIST Report No 322, UNU-IIST, P.O. Box 3058, Macau, March 2005.
http://www.iist.unu.edu/newrh/III/1/page.html.

11. J. He, Z. Liu, and X. Li. A theory of contracts. Technical Report
UNU-IIST Report No 327, UNU-IIST, P.O. Box 3058, Macau, July 2005.
http://www.iist.unu.edu/newrh/III/1/page.html.

12. J. He, Z. Liu, X. Li, and S. Qin. A relational model for object-oriented designs. InPro.
APLAS’2004, Lecture Notes in Computer Science, Taiwan, 2004. Springer.

13. J. He, Z. Liu, and M. Reed. Theories and techniques of program modelling, design and ver-
ification: positioning the research at UNU-IIST in the collaborative research on the program
verifier challenge. Submitted to IFIP Working Conference on Program Verifier Challenge,
2005.

14. C.A.R. Hoare. The verifying compiler: A grand challenge for computer research.Journal of
the ACM, 50(1):63–69, 2003.

15. I. Jacobson, G. Booch, and J. Rumbaugh.The Unified Software Development Process.
Addison-Wesley, 1999.

16. P. Kruchten.The Rational Unified Process – An Introduction (2nd Edition). Addison-Wesly,
2000.

17. C. Larman.Applying UML and Patterns. Prentice-Hall International, 2001.
18. X. Li, Z. Liu, and J. He. Formal and use-case driven requirement analysis in UML. In

COMPSAC01, pages 215–224, Illinois, USA, October 2001. IEEE Computer Society.
19. X. Li, Z. Liu, J. He, and Q. Long. Generating prototypes from a UML model of re-

quirements. InInternational Conference on Distributed Computing and Internet Technol-
ogy(ICDIT2004), Lecture Notes in Computer Science, Bhubaneswar, India, 2004. Springer.

20. Z. Liu, J. He, and X. Li. Contract-oriented development of component systems. InProceed-
ings of IFIP WCC-TCS2004, pages 349–366, Toulouse, France, 2004. Kulwer Academic
Publishers.

21. Z. Liu, J. He, and X. Li. A model of refinement for object-oriented and component systems.
In FMCO 2004: International Symposuim on Formal Methods of Component and Object
Systems. Lecture Notes in Computer SCience, page to appear, Leiden, the Netherlands, 2004.
Springer.

22. Z. Liu, J. He, X. Li, and Y. Chen. A relational model for object-oriented requirement analysis
in UML. In Proc. of International Conference on Formal Engineering Methods, Lecture
Notes in Computer Science, Singapore, November 2003. Springer.

23. Z. Liu, A.P. Ravn, and X. Li. Unifying proof methodologies of Duration Calculus and Linear
Temporal Logic.Formal Aspects of Computing, 16(2), 2004.

24. Q. Long, Z. Liu, J. He, and X. Li. Consistent code generation from uml models. InAustralia
Conference on Software Engineering (ASWEC). IEEE Computer Scienty Press, 2005.

25. Q. Long, Z. Qiu, Z. Liu, L. Shao, and J. He. POST: A case study for an incremental devel-
opment in rCOS. In H.V. Dang and M. Wirsing, editors,Proc. of ICTAC05, International
Colloquium on Theoretical Aspects of Computing, Lecture Notes in Computer Science 3722.
Springer, 2005.

26. S.J. Mellor and M.J. Valcer.Executable UML: a foundation for model-driven architecture.
Addison-Wesley, 2002.

27. OMG. The Unified Modeling Language (UML) Specification - Version 1.4, September
2001. Joint submission to the Object Management Group (OMG)http://www.omg.
org/technology/uml/index.htm .

28. A. Pnueli. Looking ahead. Workshop on The Verification Grand Challenge February 21–23,
2005 SRI International, Menlo Park, CA.

29. U. Shrotri, P. Bhaduri, and R. Venkatesh. Model checking visual specification of require-
ments. InInternational Conference on Software Engineering and Formal Methods (SEFM
2003), page 202209, Brisbane, Australia. IEEE Computer Society Press.

30. J.M. Wing. A specifier’s introduction to formal methods.IEEE Computer, 23(9):8–24, 1990.

