
Let’s Not Forget Validation

Mats P.E. Heimdahl
Department of Computer Science and Engineering, University of Minnesota

University of Minnesota Software Engineering Center (UMSEC)

Abstract— As we are moving from a traditional software
development process to a new development paradigm where
the process it largely driven by tools and automation, new
challenges for verification and validation (V&V) emerge. Pro-
ductivity improvements will in this new paradigm be achieved
through reduced emphasis on testing of implementations,
increased reliance on automated analysis tools applied in the
specification domain, verifiably correct generation of source-
code, and verifiably correct compilation. The V&V effort
will now be largely focused on assuring that the formal
specifications are correct and that the tools are trustworthy
so that we can rely on the results of the analysis and code
generation without extensive additional testing of the resulting
implementation. Traditionally, most research efforts have been
devoted to the verification problem. In this position paper we
point out the importance of validation and argue that if we
fail to adequately address the validation problem, the impact
of verifying code generation and compilation will be limited.

I. INTRODUCTION

Over the last decade and a half, our group’s focus has
been on the development of software for safety-critical
systems; the focus of this paper.

In software engineering we make a distinction between
the validation and the verification of a software system
under development. Verification is concerned with demon-
strating that the software implements the functional and
non-functional requirements. Verification answers the ques-
tion “is this implementation correct with respect to its
requirements?” Validation, on the other hand, is concerned
with determining if the functional and non-functional re-
quirements are the right requirements. Validation answers
the question “will this system, if build correctly, be safe
and effective for its intended use?” There is ample evidence
that most safety problems can be traced to erroneous and
inadequate requirements. Incomplete, inaccurate, ambigu-
ous, and volatile requirements have plagued the software
industry since its inception. In a seminal 1987 article [5],
Fred Brooks wrote

The hardest single part of building a software
system is deciding precisely what to build. No
other part of the conceptual work is as difficult as
establishing the detailed technical requirements...
No other part of the work so cripples the resulting
system if done wrong. No other part is as difficult
to rectify later.

We know that the majority of software errors are made
during requirements analysis [4], [10], [30], [26], and that
requirements errors are more likely to affect the safety of a

Concept

Formation


Requirements


Design


Implementation


Subsystem

integration


System

integration


Production


Inspections


Inspections


Inspections

Some Analysis


Unit Testing (a lot)


Integration

Testing


System

Testing


Fig. 1. Traditional Software Development Process.

system than errors introduced during design or implemen-
tation [21], [23].

Therefore, to improve the safety and overall quality of
software intensive critical systems it is imperative that the
requirements are properly validated. Unfortunately, current
certification standards, for example, DO-178B [28], as well
as the research efforts outlined in the Verifiable Software
Project focus almost exclusively on various verification
activities. We find this unfortunate since one of the most
critical problems with current certification standards and
development practices is a lack of robust and reliable
ways of assessing whether the requirements are correct. To
gain the full advantage of verifying code generators and
compilers we have to develop new techniques to determine
if the requirements have been adequately validated.

There is a significant effort in the avionics and medical
technology industry to reduce the high cost of software
development. The current trend is to focus on tools and
automation, for example, automatically generating certifi-
ably correct production code from a formal requirements
specification or generating MC/DC tests for certification.
This approach is commonly referred to as model-based
development. Since this approach relies heavily on the cor-
rectness of the model (or specification) for the correctness
of the derived system, our current inability to adequately
validate our requirements raises a serious concern regarding
the adoption of this type of automation. In the remainder
of this position paper we will discuss model-based develop-
ment in more detail and point to some concerns that must be
considered as we adopt verifying translators in the software
development for safety-critical systems.



Code


Analysis
 Testing
 Visualization
 Prototyping


Formal

Specification


Fig. 2. Model-Based Development.

II. MODEL-BASED DEVELOPMENT

Traditionally, software development has been largely a
manual endeavor. Validation that we are building the right
system has been achieved through requirements and specifi-
cation inspections and reviews. Verification that the system
is developed to satisfy its specification is archived through
inspections of design artifacts and extensive testing of the
implementations (Figure 1). In critical embedded control
systems, such as the software controlling aeronautics appli-
cations and medical devices, the validation and verification
phase (V&V) is particularly costly and consume approxi-
mately 50%–70% of the software development resources.
Thus, if we could devise techniques to help us reduce the
cost of V&V, dramatic cost savings could be achieved.
The current trend towards model-based development is one
attempt to address this problem.

In model-based development, the development effort is
centered around a formal description of the proposed soft-
ware system. For validation and verification purposes, this
formal specification can then be subjected to various types
of analysis, for example, completeness and consistency
analysis [15], [17] model checking [13], [7], [8], [18], [9],
theorem proving [1], [2], and test case generation [6], [12],
[11], [3], [25], [19], [27]. Through manual inspections,
formal verification, and simulation and testing we convince
ourselves (and any regulatory agencies) that the software
specification possesses desired properties. The implementa-
tion is then automatically and correctly generated from this
specification and little or no additional testing of the imple-
mentation is required (Figure 2). There are currently several
commercial and research tools that attempt to provide these
capabilities—commercial tools are, for example, Esterel
and SCADE from Esterel Technologies, Statemate from i-
Logix [14], and SpecTRM from Safeware Engineering [22];
and examples of research tool are SCR [16], RSML−e [29],
and Ptolemy [20].

The capabilities of model-based development enable us
to follow a different process. The development is centered
around the formal specification and the V&V has been
largely moved from testing and analyzing the code (Fig-

Concept

Formation


Requirements


Implementation


Subsystem

integration


System

integration


Production


Inspections


Integration

Testing


System

Testing


Formal

Specification


Properties


Inspections

Formal Analysis


Specification Testing


Fig. 3. Model-Based Development Process.

ure 1) to analyzing and testing the specification (Figure 3)—
the traditional (and, in the critical systems domain, very
costly) unit testing of code is replaced with testing and
analysis of the specification in the hope to provide higher
quality at a lower cost.

Note here that, in our opinion, the possibility of reducing
or fully automating the costly unit-testing efforts are key to
success of model-based development. We have found very
little support for this type of development if modelling and
analysis are to be performed in addition to what is cur-
rently done—these new techniques must either make current
efforts more efficient or replace some currently required
V&V activity. In either case, our increased reliance on tools
requires that they can be trusted—a prime opportunity for
verifying translators as well as analysis tools that provide
proof justifications and proof explanations. On the other
hand, we are now demanding that the formal specification
serving as the basis for our development is correct with
respect to the customers’ true needs; a demand that can
only be met through extensive model validation.

In an ongoing project with Rockwell Collins Inc. and
NASA Langley Research Center we have investigated
model-based development focusing mainly on the verifi-
cation aspects of the problem. Below we provide a short
overview of one of our case examples and discuss some
issues that have arisen during the course of this project.

A. Overview of a Flight Guidance System

A Flight Guidance System (FGS) is a component of
the overall Flight Control System (FCS) in a modern
commercial aircraft. It compares the measured state of
an aircraft (position, speed, and attitude) to the desired
state and generates pitch and roll guidance commands to
minimize the difference between the measured and desired
state. These guidance commands are both displayed to the
pilot as guidance cues on the Primary Flight Display (PFD)
and sent to the Autopilot (AP) that moves the control
surfaces of the aircraft to achieve commanded pitch and
roll.

The internal structure of the FGS can be broken down
into the mode logic and the flight control laws. The flight
control laws accept information about the aircraft’s current
and desired state and compute the pitch and roll guidance



commands. The mode logic determines which lateral and
vertical modes are armed (attempting to lock on to a
navigation source) and active (providing guidance to the
aircraft) at any given time. It is an excellent example
because it is complex and representative of a class of
problems frequently encountered in the design of embedded
control systems.

B. Modelling Process

In the project, Rockwell Collins researcheers collected
the system requirements as informal “shall” statements.
These requirements were relatively mature and well-
understood. The next phase, modelling, consisted of con-
structing by hand an executable model that we believed
exhibited the behavior informally stated in the shall state-
ments; in this case we used the RSML−e notation developed
at the University of Minnesota. Throughout creation of the
model, we continually used the simulation capabilities of
the RSML−e execution and analysis environment NIMBUS
to execute the model and informally confirm that it behaved
as we expected. As we built the model, we discovered and
corrected numerous ambiguous, unclear, and inconsistent
informal requirements.

In the formal verification phase, we manually translated
the informal shall requirements into formal CTL properties
stated over the model. We translated The RSML−e model
into NuSMV using a translator developed by the University
of Minnesota. Again, the formalization process from shall
statements to CTL helped us improve the informal require-
ments. We used the NuSMV model checker to determine
whether the properties held over the model or not.

When completed, the model of the FGS mode logic
consisted of 41 input variables (Boolean and enumer-
ated), 16 small, tightly synchronized hierarchical finite state
machines, 122 macro or function definitions, 29 output
variables (Boolean and enumerated), and was roughly 160
pages long in its typeset version. We developed 300+ CTL
properties based on the informal requirements. A detailed
description of the model and its simulation environment is
available in [24].

III. THE SPECIFICATION WILL BE WRONG

As mentioned above, the process of creating a model
from the English prose requirements caused us to go back
and clarify the English statement of the requirements. In the
same way, translating the English statements into CTL also
prompted us to go back and clarify the English statement.
In addition, the verification that the model satisfied the re-
quirements (formalized as CTL properties) led to additional
insight into the validation problem. For example, consider
the well-validated and (at the time) non-controversial re-
quirement below.

If Heading Select mode is not selected, Heading
Select mode shall be selected when the HDG
switch is pressed on the Flight Control Panel.

After formalization into CTL, this property did not verify
in our model. Using the model-checker we discovered two
ways in which this property will not be true. First, if
another event arrived at the same time as the HDG switch
was pressed, that event could preempt the HDG switch
event. Second, if this side of the FGS was not active, the
HDG switch event was completely ignored by this side
of the FGS. These were two scenarios that were correctly
handled in the model of the FGS systems, but not captured
in any Requirement (property). The counterexamples from
NuSMV led us to modify the requirement to state

If this side is active and Heading Select mode
is not selected, Heading Select mode shall be
selected when the HDG switch is pressed on the
FCP (providing no higher priority event occurs
at the same time).

While longer and more difficult to read than the original
statement, it is a more accurate description of the system’s
intended behavior. Of course, we also had to clearly define
what a “higher priority”‘ event was.

We found that the process of proving the properties forced
us to go back and modify virtually all of our original
English requirements; consequently, all formal specification
properties also had to be modified. It also became clear
to the engineers formalizing the properties that great care
needs to be taken when formulating SMV properties to
ensure that their proofs are meaningful. For example, in the
modelling of the FGS we frequently used macros (Boolean
functions) to encapsulate commonly used properties, for
example, we might encapsulate a complex condition in
a macro named “When Lateral Mode Manually Selected”.
The macros were frequently used when the requirements
were stated as SMV properties. In most cases, the macro
was used as the antecedent of an implication, for example,

AG(m_When_Lateral_Mode_Manually_Selected.result ->
Onside_FD_On)

Naturally, if the macro “When Lateral Mode Manually -
Selected” was over-constrained in the model (or even con-
tradictory and thus always false) this proof would succeed
but it would be rather meaningless.

To summarize, when developing formal models of any
substantial system, the models will most likely be incor-
rect with respect to the customers’ real needs. In our
case, the three complementary models—informal English
language requirements, requirements formalized as CTL
properties, and an executable formal model—served to
check each other in a rigorous validation process. Had we
only built the executable model and validated it through
testing, is is highly likely that significant flaws would have
remained. Similarly, had we been blessed with a correct-
by-construction tool that would have helped us synthesize
an implementation from our 300+ CTL properties, the
implementation would certainly have been grossly incor-
rect with respect to the customers’ real needs. It is clear
that a rigorous validation process must be in place to



ensure that any formal artifacts serving as the basis for
downstream automation are correct; without this validation
any breakthroughs in verifiably correct code generation and
compilation will achieve limited success.

IV. LOSS OF “COLLATERAL VALIDATION”

Recall that the goal of adopting model-based develop-
ment is to reduce the high cost of software development
without sacrificing quality. These cost savings will be
achieved by replacing costly manual processes with tools.
As mentioned above, our current inability to adequately
validate our requirements, models, and properties raises
a serious concern regarding the adoption of this type of
automation. Manual processes, may that be design, cod-
ing, testing, or putting a medical device through clinical
studies, draw on the collective experience and vigilance
of many dedicated software and engineering professionals;
professionals that provide “collateral validation” as they
are working on the software. Experienced professionals
designing, developing code, or defining test-cases provide
additional validation of the software system; if there is a
problem with the specified functionality of the system, they
have a chance of noticing and taking corrective action. As
an example, consider the requirements example from the
previous section. Although the facts that the FGS had to
be active and that no higher-priority events were received
at the same time were not explicitly sated in any of the
original requirements. Nevertheless, in production the en-
gineers implemented the FGS functionality correctly; these
problems were caught in the manual development process
and corrected. When replacing these manual efforts with
automation, proper validation of the formal requirements
specifications on which the automation is based becomes
absolutely essential; there may be no safeguards in the
downstream development activities to catch critical flaws
in the formal model—the possibility for informal collateral
validation is lost. This again brings us back to the critical
need for robust techniques for validation of the formal ar-
tifacts forming the basis for the model-based development.

V. SUMMARY

The emergence of formal modelling languages acceptable
to practicing engineers and the development of powerful
analysis tools, for example, model checkers, will enable
a new development paradigm relying heavily on the use
of automated tools for analysis and code generation—a
development paradigm often referred to as model-based
development. As a community, we are now in a position
to bring the full power of formal software development to
fruition. As discussed in this position paper, however, we
have to approach this opportunity cautiously. All formal
development efforts rely on a correct specification as a
basis for development and verification; this puts enormous
demands on the validation of the specification—the specifi-
cation simply must be correct with respect to the customers’

needs. Unfortunately, research efforts outlined in the Veri-
fiable Software Project focus almost exclusively on various
verification activities. We find this troublesome; to gain the
full advantage of verifying code generators and compilers
we have to concurrently develop techniques to determine
if the specifications have been adequately validated. It
would be highly disappointing if the enormous advances
in verification technology we have seen the last decade—
and will most likely see in the future—are used to verify
that faulty specifications are implemented correctly. A few
well publicized failures are enough to make widespread
industry adoption and regulatory acceptance exceedingly
difficult and set our efforts back a decade—let us make
sure that this does not happen.

ACKNOWLEDGEMENTS

The author wishes to acknowledge the contributions of
Dr. Steven P. Miller, Dr. Micheal W. Wahlen, and Dr. Allan
Tribble of Rockwell Collins for their keen insight into
the relationship between shall requirements, models, and
formal properties as well as their modelling and analysis
efforts; the ongoing support of this work by Ricky But-
ler, Kelly Hayhurst, and Celeste Bellcastro of the NASA
Langley Research Center; and the efforts of his current
and former graduate students Anjali Joshi, Yunja Choi,
Sanjai Rayadurgam, George Devaraj, and Dan O’Brien of
the University of Minnesota.

REFERENCES

[1] Myla Archer, Constance Heitmeyer, and Steve Sims. TAME: A PVS
interface to simplify proofs for automata models. In User Interfaces
for Theorem Provers, 1998.

[2] S. Bensalem, P. Caspi, C. Parent-Vigouroux, and C. Dumas. A
methodology for proving control systems with Lustre and PVS.
In Proceedings of the Seventh Working Conference on Dependable
Computing for Critical Applications (DCCA 7), pages 89–107, San
Jose, CA, January 1999. IEEE Computer Society.

[3] M. R. Blackburn, R. D. Busser, and J. S. Fontaine. Automatic gener-
ation of test vectors for SCR-style specifications. In Proceedings of
the 12th Annual Conference on Computer Assurance, COMPASS’97,
June 1997.

[4] B. Boehm. Software Engineering Economics. Prentice-Hall, Engle-
wood Cliffs, NJ, 1981.

[5] F. Brooks. No silver bullet: : Essence and accidents of software
engineering. IEEE Computer, pages 10–19, April 1997.

[6] J. Callahan, F. Schneider, and S. Easterbrook. Specification-based
testing using model checking. In Proceedings of the SPIN Workshop,
August 1996.

[7] W. Chan, R.J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin,
and J.D. Reese. Model checking large software specifications. IEEE
Transactions on Software Engineering, 24(7):498–520, July 1998.

[8] Y. Choi and M. Heimdahl. Model checking RSML−e requirements.
In Proceedings of the 7th IEEE/IEICE International Symposium on
High Assurance Systems Engineering, pages 109–118, Tokyo, Japan,
October 2002.

[9] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model
Checking. MIT Press, 1999.

[10] A. Davis. Software Requirements: Object, Function, and States.
Prentice-Hall, Englewood Cliffs, NJ, 1993.

[11] A. Engels, L. M. G. Feijs, and S. Mauw. Test generation for
intelligent networks using model checking. In Proceedings of
TACAS’97, LNCS 1217, pages 384–398. Springer, 1997.

[12] Angelo Gargantini and Constance Heitmeyer. Using model checking
to generate tests from requirements specifications. Software Engi-
neering Notes, 24(6):146–162, November 1999.



[13] O. Grumberg and D.E.Long. Model checking and modular verifica-
tion. ACM Transactions on Programming Languages and Systems,
16(3):843–871, May 1994.

[14] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
A. Shtull-Trauring, and M. Trakhtenbrot. Statemate: A working
environment for the development of complex reactive systems. IEEE
Transactions on Software Engineering, 16(4):403–414, April 1990.

[15] Mats P. E. Heimdahl and Nancy G. Leveson. Completeness and con-
sistency in hierarchical state-base requirements. IEEE Transactions
on Software Engineering, 22(6):363–377, June 1996.

[16] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. SCR∗: A toolset
for specifying and analyzing requirements. In Proceedings of the
Tenth Annual Conference on Computer Assurance, COMPASS 95,
1995.

[17] C.L. Heitmeyer, R.D. Jeffords, and B.G. Labaw. Automated consis-
tency checking of requirements specifications. ACM Transactions on
Software Engineering and Methodology, 5(3):231–261, July 1996.

[18] Constance Heitmeyer, James Kirby Jr., Bruce Labaw, Myla Archer,
and Ramesh Bharadwaj. Using abstraction and model checking
to detect safety violations in requirements specifications. IEEE
Transactions on Software Engineering, 24(11):927–948, November
1998.

[19] Robert Jasper, Mike Brennan, Keith Williamson, Bill Currier, and
David Zimmerman. Test data generation and feasible path analysis.
In Proc. of Int’l Symp. on Software Testing and Analysis, pages 95–
107, August 1994.

[20] Edward A. Lee. Overview of the ptolemy project. Technical Report
Technical Memorandum UCB/ERL M03/25, University of California,
Berkeley, CA, 94720, USA, July 2003.

[21] N. Leveson. Safeware: System Safety and Computer. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1995.

[22] Nancy G. Leveson, Mats P.E. Heimdahl, and Jon Damon Reese.
Designing Specification Languages for Process Control Systems:
Lessons Learned and Steps to the Future. In Seventh ACM SIGSOFT
Symposium on the Foundations on Software Engineering, volume
1687 of LNCS, pages 127–145, September 1999.

[23] R. Lutz. An overview of REFINE 2.0. In Proceedings of the
First ACM SIGSOFT Symposium on the Foundations of Software
Engineering, 1993.

[24] S. Miller, A. Tribble, T. Carlson, and E. Danielson. Flight guid-
ance system requirements specification. Technical Report CR-
2003-212426, NASA Langley Research Center, June 2003. Avail-
able at http://techreports.larc.nasa.gov/ltrs/refer/2003/cr/NASA-2003-
cr212426.refer.html.

[25] A. Jefferson Offutt, Yiwie Xiong, and Shaoying Liu. Criteria for
generating specification-based tests. In Proceedings of the Fifth IEEE
International Conference on Engineering of Complex Computer
Systems (ICECCS ’99), October 1999.

[26] C. Ramamoorthy, A. Prakesh, W. Tsai, and Y. Usuda. Software
engineering: Problems and perspectives. IEEE Computer, pages 191–
209, October 1984.

[27] Sanjai Rayadurgam and Mats P.E. Heimdahl. Coverage based
test-case generation using model checkers. In Proceedings of the
8th Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems (ECBS 2001), pages 83–
91. IEEE Computer Society, April 2001.

[28] RTCA. Software Considerations In Airborne Systems and Equipment
Certification. RTCA, 1992.

[29] Jeffrey M. Thompson, Mats P.E. Heimdahl, and Steven P. Miller.
Specification based prototyping for embedded systems. In Seventh
ACM SIGSOFT Symposium on the Foundations on Software Engi-
neering, number 1687 in LNCS, pages 163–179, September 1999.

[30] A. van Schouwen. The A-7 requirements model: Re-examination
for real-time systems and an application to monitoring systems.
Technical Report 90-276, Queens University, Hamilton, Ontario,
1990.


