
Integrating Static Checking and Interactive Verification:
Supporting Multiple Theories and Provers in Verification

Joseph R. Kiniry
Systems Research Group

School of Computer Science and Informatics
UCD Dublin

Belfield, Dublin 4, Ireland

Patrice Chalin
Dependable Software Research Group

Department of Computer Science and Software Engineering
Concordia University

Montreal, Quebec, H3G 1M8, Canada

Clément Hurlin
Université Henri Poincaré, Nancy 1

BP 60120, Nancy Cedex, France

with contributions from
Cees-Bart Breunesse, David Cok, Bart Jacobs,

Erik Poll, Silvio Ranise, Aleksy Schubert, and Cesare Tinelli

Abstract

Automatic verification by means of extended static
checking (ESC) has seen some success in industry and
academia due to its lightweight and easy-to-use nature. Un-
fortunately, ESC comes at a cost: a host of logical and prac-
tical completeness and soundness issues. Interactive veri-
fication technology, on the other hand, is usually complete
and sound, but requires a large amount of mathematical and
practical expertise. Most programmers can be expected to
use automatic, but not interactive, verification. The focus
of this proposal is to integrate these two approaches into a
single theoretical and practical framework, leveraging the
benefits of each approach.

1. Introduction

Endemic in society today are problems related to the
lack of software quality which, as a result, is costing gov-
ernments, businesses, and nations billions of dollars annu-
ally [15]. Correctness and security issues are also directly

related to some of the most important concerns of the day
such as those of national security and technology-based vot-
ing.

Additionally, driven by governmental regulations and
market demands, businesses are now slowly beginning to
assume liability for the faults exhibited by the software sys-
tems they offer to their customers. This is particularly true
in safety and security critical domains.

While a variety of software engineering practices have
been developed to help increase software quality (e.g., test-
ing practices, system design, modern processes, robust op-
erating systems and programming languages), it is widely
acknowledged that a promising way to achieve highly reli-
able software in critical domains is to couple these practices
with applied formal techniques supported by powerful mod-
ern tools and technologies like those discussed in this paper.

1.1. Program Verification

Applied formal methods has turned a corner over the past
few years. Various groups in the semantics, specification,
and verification communities now have sufficiently devel-
oped mathematical and tool infrastructures that automatic



and interactive verification of software components that are
written in modern programming languages like Java has be-
come a reality.

Automatic verification by means of Extended Static
Checking (ESC) has seen some success in industry and
academia due to its lightweight and easy-to-use nature. Un-
fortunately, ESC comes at a cost: a host of logical and prac-
tical completeness and soundness issues. Interactive veri-
fication technology, on the other hand, is usually complete
and sound, but requires a large amount of mathematical and
practical expertise. Typical programmers can be expected
to use automatic, but not interactive, verification.

In this paper we discuss work which has been undertaken
to:

• integrate the ESC and interactive verification ap-
proaches into a single theoretical framework, and

• directly realize this theoretical framework in a modern
software development environment (IDE) as an Open
Source initiative.

Specifically, our current work is focused on the integration
of the verification technologies behind two successful tools,
namely ESC/Java2 and the Loop program verifier (both will
be described shortly). The key idea is to build a single envi-
ronment whereby as much verification as possible happens
automatically, and thus use of interactive verification only
happens when necessary. (In those situations where devel-
opers wish to delay completion of the interactive proofs, it
will be possible to insert run-time assertion checking code
to perform compensatory verification during code execu-
tion.)

2. Two Key Java Verification Tools

Next, we discuss two complementary verification tools
for Java upon which we base this work.

2.1. Extended Static Checking: ESC/Java2

A successful automatic verification tool for Java is
ESC/Java, an extended static checker originally developed
at DEC SRC [7]. The next-generation release, called
“ESC/Java2”, is now available as an now available as an
Open Source project that is supported by academic and in-
dustrial researchers [5]. David Cok and the first author are
the ESC/Java2 project administrators and main contributors.
ESC/Java2 is currently used as a research foundation by
over a half dozen research groups and as an instructional
tool in nearly two dozen software-centric courses around
the world.

ESC/Java2 processes Java programs that are anno-
tated with the Java Modeling Language (JML) [2, 12].

ESC/Java2 automatically converts JML-annotated Java
code into verification conditions that are automatically dis-
charged by an embedded theorem prover—currently, Sim-
plify [6]. Problems in the specifications, programs, or the
checking itself are indicated to the user by means of error
messages. As ESC/Java2’s performance and mode of inter-
action are comparable to an ordinary compiler, it is quite
usable by industry developers as well as computer science
and software engineering students.

2.2. Interactive Verification: The Loop Tool

The Loop tool, developed by the SoS Group at Radboud
University Nijmegen under the supervision of Prof. Bart Ja-
cobs, is an interactive verification tool for JavaCard [3]. The
Loop tool is one of the most complete verifiers with respect
to the subset of Java that it covers. Loop compiles JML-
annotated Java programs into proof obligations expressed
as theories for the PVS theorem prover. By making use of
PVS to interactively discharge the proof obligations, he or
she is able to prove a program correct with respect to its
JML specification.

The base Java/JML semantics of the Loop tool essen-
tially consists of a parameterized theory. The theory pa-
rameters are for the (sub-)theory to be used to reason about
integral types. Early in the LOOP Project, Java’s integral
types were modeled by the mathematical integers. Later,
support was added for bounded integers (with the familiar
modulo arithmetic) and a bitvector representation (which
facilitates reasoning about bit-wise operations—something
that is common in JavaCard applications). When reasoning
about Java programs, one has a choice of program logics in-
cluding Hoare logics and two weakest precondition calculi.
Recently, Breunesse has merged these into a single, unified
theory in which different representations can be used simul-
taneously [1].

As these two tools represent some of the best-of-breed of
applied formal methods in the Java domain, integrating their
foundations and approaches has merit. To accomplish this
goal, there are several theoretical and practical challenges
to be faced.

3. Integration: Observations and Challenges

There is no single canonical semantics of Java. The
canonical informal semantics for Java is embodied in the
Java Language Specification [9]. Various groups have for-
malized portions of this text and built complementary tools,
e.g., the

• Everest Group at INRIA Sophia-Antipolis,

• SoS Group at the Radboud University Nijmegen,



• Logical Group at INRIA Futurs/Université Paris-Sud,

• SAnToS Laboratory at Kansas State University,

• KeY group, composed of researchers from the
Chalmers University of Technology, the University of
Koblenz, and the University of Karlsruhe,

• Software Component Technology Group at ETH
Zürich, and

• now disbanded Extended Static Checking Group at
HP/Compaq/Digital Systems Research Center.

In all of these cases the formalizations are incomplete, ei-
ther in scope or in accuracy.

There is no single, core, canonical semantics of JML.
While there are several partial informal and formal seman-
tics for JML, there is no single, core semantics. Further-
more, the informal semantics of JML is much more tran-
sient and imprecise than that of Java, so the problems men-
tioned above for Java are compounded for JML. This state
of affairs leads to subtle inconsistencies between the inter-
pretation of specifications by the tools that support JML.
Because of this inconsistency, relating the semantics to each
other is extremely difficult. Additionally, explaining, ex-
tending, and reasoning about these artifacts (e.g., the calculi
of ESC/Java2) is very difficult.

Little work has been done on meta-logical reason-
ing about object logics. By meta-logical reasoning we
mean reasoning about, rather than within, the semantics
of program and specification languages. Formal meta-
mathematical proofs are rare. It is not known, for example,
if ESC/Java2’s object logic is sound. This is a critical issue.

4. An Integrated Verification Environment

In collaboration with others, our research groups have
begun work on an integrated verification environment (IVE)
and its necessary theoretical foundations. In doing so we
have started to address the problems identified in the previ-
ous section.

We are (concurrently) working on the achievement of the
following initial milestones:

• elaboration of a semantics for a “core” JML,

• extracting, analysing, and extending ESC/Java2’s logic
and calculi, and

• redesigning ESC/Java2’s proof infrastructure as well
as backend interfaces and adaptors with the main ob-
jective of allowing it to support new provers.

4.1. Semantics for “Core” JML

Semantics have been developed for JML within differ-
ent logics, nearly all of which have been embedded in the
various tools developed by the groups enumerated in Sec-
tion 3. A few of these tools are publicly available, but most
were never used outside the group that originally developed
them.

To resolve ambiguities, disagreements, and lack of de-
tailed formal documentation within the JML community, a
single, open semantics of a “core” of JML needs to be writ-
ten. Chalin and Kiniry are currently outlining a proposed
core and have begun formalizing its definition. The out-
come of this effort is also a major goal of the MOBIUS
project [13].

This semantics will be written in a well-understood for-
malism, e.g., within a modern extension to Hoare logic, a
denotational semantics, and/or in a concurrent operational
semantics. In our initial work we have decided to express
our base, canonical semantics in PVS and Isabelle. Realiz-
ing the object logic within higher-order provers will help us
characterize and compare semantics.

It is expected that multiple formalizations of the object
logic will be created due to practical and theoretical rea-
sons. E.g., most research groups have developed expertise
in only one prover, and furthermore, the community can
benefit with experimentation with the varying capabilities
of each of these provers.

4.2. Evolving ESC/Java2’s Logic & Calculi

As inherited from its predecessor SRC’s ESC/Java,
ESC/Java2 makes use of an unsorted object logic and two
calculi (a weakest precondition calculus and a strongest
postcondition calculus). The unsorted object logic consists
of approximately 80 axioms written in the language un-
derstood (only) by the Simplify prover. These axioms are
highly tuned to the quirks and capabilities of Simplify. Re-
cent developments in ESC/Java2 saw the logic extended by
another (approx.) 20 axioms.

A transcription of this Simplify-based unsorted object
logic has been written in PVS. We refer to this formaliza-
tion of the logic as EJ0. Two other logics, EJ1 and EJ2,
have also been written; EJ1 is merely a sorted version of
EJ0 whereas EJ2, also a sorted logic, was written from
scratch with the purpose of better representing the abstrac-
tions needed by ESC/Java2 to reason about JML annotated
Java programs. Soundness proofs as well as results on the
(semi-)equivalence of the EJi logics are underway.

We will also be “extracting” the weakest precondition
and a strongest postcondition calculi of ESC/Java2, as well
as at least one of the weakest precondition calculi used
with the Loop verification system. This will most likely



be done in a higher-order logic or a term rewriting frame-
work. The rewriting speed of special purpose environments
like Maude [4] may be of benefit as the tool and verification
efforts scale to larger problems.

4.3. Supporting Multiple Provers

As we progress in our work on the definition and proofs
of soundness and completeness of the EJi logics, we are
also progressing in our work on extending and adapting
ESC/Java2 to support multiple provers. By developing a
generic prover interface along with suitable adaptors, we
plan on experimenting with a few next-generation first-
order provers.

We anticipate the possibility of supporting the use of
multiple provers, simultaneously or independently. Which
prover to use might be determined automatically by
ESC/Java2 based on the context of the verification and the
capabilities of the provers. For example, while Simplify is
a very fast predicate solver, it does not support a complete
or sound (fragment of) arithmetic, thus in verification con-
texts where arithmetic is used, the tool should automatically
avoid using Simplify.

We have chosen the Sammy and haRVey provers as the
initial provers for experimentation [8, 14]. This choice was
made due to our research relationship with the authors of
these two tools as well as the authors’ high-profile position
within the SMT-LIB community [16].

As a necessary precursor to being able to support mul-
tiple provers, we are required to translate our object logic,
whose current canonical representation is is PVS, into an
appropriate formalism understood by each of the provers.
Encoding of the ESC/Java2 object logic for these provers is
being accomplished primarily by their respective research
teams, not by us.

We will also be experimenting with the use of higher-
order provers as backends for ESC/Java2. Our initially tar-
geted provers are PVS, Isabelle, and Coq. Aside from the
authors, Aleksy Schubert is working on a Coq realization
of the object logic whereas Erik Poll is contributing to the
PVS realization.

5. Conclusion

One of the advantages of our project is that we have a
working toolset today that supports Java and JML. These
tools are actively being used by researchers and a few in-
dustry practitioners. Our goal is to help evolve these tools
into their next-generation counterparts and, all the while,
make sure that we take our own medicine.

Thus, for example, writing JML specifications for the
Java modules of our toolsets has been and is routinely done.
We are also applying our tools to themselves, thus providing

non-trivial case studies demonstrating the practical utility of
the tools.

ESC/Java2 and Loop have been applied to other case
studies in the areas of internet voting [11], JavaCard ap-
plications [10], and web-based enterprise applications, for
example. Some of these case studies are already part of our
GForge [17]; the rest will be added shortly. We will be rou-
tinely re-executing these case studies as the tools evolve so
as to validate the tools and ensure that their effectiveness is,
in fact, improving.

6. Acknowledgments

This proposal is based upon the work of many people.
Our collaborators are gratefully acknowledged on the first
page as well as in the various sections of the proposal. We
thank the anonymous referees for their helpful comments.
This work is being supported by the Ireland Canada Uni-
versity Foundation as well as international grants (EU FP6)
and national grants (from the Science Foundation Ireland
and Enterprise Ireland).

References

[1] C.-B. Breunesse. On JML: Topics in Tool-assisted Verifi-
cation of Java Programs. PhD thesis, Radboud University
Nijmegen, 2005. in preparation.

[2] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leav-
ens, K. M. Leino, and E. Poll. An overview of JML tools
and applications. International Journal on Software Tools
for Technology Transfer, Feb. 2005.

[3] Z. Chen. Java Card Technology for Smart Cards: Architec-
ture and Programmer’s Guide. Addison-Wesley Publishing
Company, 2000.

[4] M. Clavel, F. Durán, S. Eker, J. Meseguer, and M.-O. Stehr.
Maude as a formal meta-tool. In Proceedings of the World
Congress on Formal Methods in the Development of Com-
puting Systems, 1999.

[5] D. R. Cok and J. R. Kiniry. ESC/Java2: Uniting ESC/Java
and JML: Progress and issues in building and using
ESC/Java2, including a case study involving the use of the
tool to verify portions of an Internet voting tally system. In
Proceedings, CASSIS 2004, Marseille, France, 2004. Else-
vier Science, Inc. In press.

[6] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem
prover for program checking. Technical Report HPL-2003-
148, HP Labs, July 2003.

[7] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,
J. B. Saxe, and R. Stata. Extended static checking for Java.
In ACM SIGPLAN 2002 Conference on Programming Lan-
guage Design and Implementation (PLDI’2002), pages 234–
245, 2002.

[8] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and
C. Tinelli. DPLL(T): Fast decision procedures. In R. Alur
and D. Peled, editors, Proceedings of the 16th Interna-
tional Conference on Computer Aided Verification, CAV’04



(Boston, Massachusetts), volume 3114 of Lecture Notes in
Computer Science, pages 175–188. Springer, 2004.

[9] J. Gosling, B. Joy, and G. Steele. The Java Language Speci-
fication. Addison-Wesley Publishing Company, first edition,
Aug. 1996.

[10] B. Jacobs. JavaCard program verification. In R. Boulton and
P. Jackson, editors, Theorem Proving in Higher Order Log-
ics TPHOL 2001, volume 2151 of Lecture Notes in Com-
puter Science, pages 1–3. Springer–Verlag, 2001.

[11] B. Jacobs. Counting votes with formal methods. In
C.Rattray, S. Majaraj, and C. Shankland, editors, Alge-
braic Methodology and Software Technology, volume 3116
of Lecture Notes in Computer Science, pages 241–257.
Springer–Verlag, 2004.

[12] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby,
D. Cok, and J. Kiniry. JML Reference Manual. Department
of Computer Science, Iowa State University, 226 Atanasoff
Hall, draft revision 1.94 edition, 2004.

[13] The MOBIUS project. http://mobius.inria.fr/.
[14] S. Ranise and D. Deharbe. Light-weight theorem proving

for debugging and verifying units of code. In International
Conference on Software Engineering and Formal Methods
SEFM 2003, Canberra, Australia, Sept. 2003. IEEE Com-
puter Society.

[15] RTI: Health, Social, and Economics Research, Research Tri-
angle Park, NC. The economic impacts of inadequate in-
frastructure for software testing. Technical Report Planning
Report 02-3, NIST, May 2002.

[16] SMT-LIB: The satisfiability modulo theories library. http:
//goedel.cs.uiowa.edu/smtlib/.

[17] The Systems Research Group GForge. http://sort.
ucd.ie/.

http://mobius.inria.fr/
http://goedel.cs.uiowa.edu/smtlib/
http://goedel.cs.uiowa.edu/smtlib/
http://sort.ucd.ie/
http://sort.ucd.ie/

