
Modular reasoning in object-oriented programming

David A. Naumann?

Department of Computer Science, Stevens Institute of Technology

This paper responds to the solicitation of position papers for the IFIP Working Con-
ference on Verified Software: Theories, Tools, Experiments (http://vstte.ethz.ch). I out-
line my recent research in verification, listing accomplishments and challenges. I do not
articulate suitably grand challenges or milestones.

My primary interest is in scientific theories of programming: What are good models
of computational behavior? What behavioral properties of components are needed for
modular reasoning about a composed system? How can such properties be specified and
a component be verified, or even derived from its specification? Such questions have
well developed answers that are adequate for small programs under strong simplifying
assumptions. But many useful programs are quite large and built from complicated
components that violate simplifying assumptions.

The longstanding challenge of compositional reasoning remains substantially un-
solved. Object-oriented programs pose several challenges that are the focus of my re-
cent research, in which auxiliary state is being used to specify encapsulation boundaries
and disciplined interdependence. The main part of this paper, Section 2, explains the ap-
proach, accomplishments, and challenges.

My work has focused on Java-like programming languages; I argue in Section 1 for
the importance of such languages. Section 4 lists some related projects in which I am
involved.

1 Why Java-like language?

In order to develop theory for modular reasoning about large programs, one needs a
corpus of large programs and automated support for experiments. Since I would like to
do science that contributes to human good through improved engineering, the primary
objects of study should be representative examples of large programs that are signifi-
cantly deployed and used. This means confronting programs written in notations like
C, Java, and C#—though not necessarily handling all of their features without restric-
tion. Aside from obvious pragmatic reasons, there are several ways in which Java-like
languages are a good point in the language design space.

– The language is sufficiently rich to express higher order design patterns which are
needed for well structured programs and used in common practice.

– Despite the preceding item, the language is essentially “defunctionalized” [26, 2]
owing to the binding of methods to classes rather than to instances. Thus relatively
simple semantic models are adequate, at least for large fragments of the language.1

? Partially supported by the National Science Foundation under grants CCR-0208984 and CCF-
0429894 and by Microsoft Research.

1 For example, my work discussed in Section 2 has been done using a machine-checked Scott-
Strachey denotational semantics, for a fragment of Java including recursive types, inheritance,

2

– The module system (packages, generic classes, public/private/protected visibility)
embodies most of what current theory offers for scope-based encapsulation.

– The Java type system is name-based; named types provide a convenient hook on
which to hang specifications and encapsulation boundaries. In particular, it helps
deal with inheritance, which is widely used if problemmatic.

– Pointer arithmetic is absent. Parameter passing is by value and identifiers cannot
alias. Method declarations are not nested (almost), avoiding the semantic complex-
ity of reference to variables in enclosing scopes other than global scope.2

These features are not without cost. Java programs make much use of global variables
(“statics”)—global in that they are in outermost scopes; this is mitigated in that the
scope of visibility may be a single class or package. Reflection, at least in full generality,
is a feature I see as a very difficult and long-term challenge for verification. This is
exacerbated in that reflection, like threads and permission-based access control, appears
in the form of special libraries rather than being distinguished with separate syntax.

Perhaps the highest cost is the ubiquity of aliasing in the sense of shared references
to mutable objects in the heap.

2 Heap encapsulation using auxiliary state

For modular reasoning in object-oriented programming there are several challenges.

1. Non-hierarchical control flow due to callbacks leads, even in sequential programs,
to interference like that in concurrent programs.

2. The conventional notion of layered abstraction is also subverted by non-hierarchical
control flow due to inheritance and method overriding.

3. Design patterns that are essentially higher order are often used, but unlike in func-
tional programming the encapsulation aspects are not expressed, owing to data rep-
resentation based on shared heap objects.

4. Functional aspects of such patterns are also not specified formally, for lack of good
models (compare “map” in functional programming with the “Visitor” pattern).

For the fourth challenge, one might argue that at best we should aim for verifying simple
safety properties, but for realistically complex systems this quickly leads to the need
for more general properties, especially for object invariants. The second and fourth
items are left to Section 3 as open challenges. For the other two, progress is being
made using auxiliary state as described in this section. A benefit of the approach is
compatibility with standard logics and specification notions, so it leverages existing
tools and programmer expertise.

As an example of the first challenge, consider a sensor playing the role of Subject
in the Subject/Observer pattern. The sensor maintains a set of registered Views: when
the sensor value reaches the threshhold v.thresh of a given view v, the sensor invokes

mutable objects, and other features without restriction. Nipkow’s group and others have ob-
tained strong results using operational models.

2 Compare the complexity of Idealized Algol models [28] with Modula-3 and Oberon, where
non-local references are restricted for those procedures that are passed as arguments or stored
in variables [20].

3

method v.notify() and removes v from the set. This description is in terms of a set, part
of the abstraction offered by the Subject; the implementation might store views in an
array ordered by thresh values. The pattern cannot be seen simply as a client using an
abstraction, because notify is then an upcall to the client. The difficulty is that v.notify
may make a reentrant callback to the sensor. Some callbacks are quite sensible, e.g.,
the view could query the sensor value. Trouble is likely if view invokes a method to
enumerate the current set of views. While notifications are under way, the array may
be in an inconsistent state—is v in the set? in the array?—yet the enumeration method
may assume as precondition the sensor’s invariant.

The problem is similar to interference in shared-variable concurrency, for which
there are several established and well understood solutions. For the reentrant callback
problem, which already occurs in sequential code, the situation is less settled, although
the probem is a frequent cause of insidious bugs. Various flawed solutions have been
proposed:

– Establish caller’s invariant before every method call (impractical in many cases,
and most calls do not result in reentrant callbacks).

– Use concurrency locks (leads to deadlocks in the sequential case).
– Use temporal specification of allowed calling sequences (heavy handed and violates

abstraction by making method calls visible; verification requires whole program).

A more promising approach begins by making the invariant an explicit precondition on
those methods that assume it, like the enumerator in the example. This precondition
cannot be established by client v attempting a reentrant callback, unless in fact the
sensor restores its invariant before invoking v.notify.

An object invariant I ought not appear in the precondition of a public method, as
that could expose the internal representation. Various techniques have been proposed to
hide information, e.g., treating I in a precondition as an opaque predicate [10, 11], as a
typestate [16], or a call to a pure method.

The most promising approach is that of Leino et al [7]. In a simplified account
sufficient for discussion, they use a ghost (auxiliary) field inv of type boolean which
represents whether the invariant of o is in force, just as a programmer might do using
an ordinary field. Several associated proof obligations embody a discipline that ensures
the following is a Program invariant, i.e., it holds in all reachable states:

(∀ o | o.inv ⇒ I(o)) (1)

Thus within the body of a method with precondition inv, one can exploit the invariant
I while exposing to clients not the predicate I but only the boolean field inv.

Besides its own fields, an object may depend on some objects that serve as its in-
ternal representation. This can be represented using another auxiliary field by which an
object points to its direct owner, if any. An object’s invariant is allowed to depend only
on objects it transitively owns. An associated program invariant is that o.inv implies
p.inv for every object p owned by o.

Ownership imposes a forest structure on the heap, separating encapsulated data
from clients. Ownership types [15, 1] embody this idea and the encapsulation has been
assessed in terms of the standard theory of representation independence [3]. But it has
proved difficult to find an ownership type system that admits common design patterns

4

and also enforces encapsulation sufficiently strong for modular reasoning about object
invariants. In particular, many examples call for the transfer of ownership (e.g., in re-
source management) and this does not sit well with types.

Exciting progress has been made using separation logic, where owning an object
o has been equated with having a precondition dependent on o. A modest challenge is
how to scale the logic up to classes (instantiable abstractions) instead of single-instance
modules. A bigger challenge is how to cope with the fact that in object-oriented lan-
guages, the object is the unit of addressability but some fields are inherited and others
(to be added in subclasses) are not known to the modular reasoner.

One advantage of encoding ownership with a ghost field is that transfer is straight-
forward; the field is mutable. In combination with the invariant-tracking field inv, the
discipline [7, 19] expresses very directly the flow of control in and out of hierarchical
encapsulation boundaries even as those boundaries are mutated.

The most exciting advantage of the approch is that it generalizes to more elaborate
patterns. Ownership is concerned with a single object and its representation. Already the
pattern of iterators is problemmatic, in that an iterator needs access to the representation
objects of its associated collection but a collection is not owned by its iterators. There
are many situations where several publically-accessible objects cooperate to provide an
abstraction, so their individual invariants need to depend on non-owned objects. Just as
the owner field records a dependence that can be taken into account in reasoning, one
can use a ghost field to record the dependence between peer objects.

This idea has been developed in the simple case of one object’s invariant depend-
ing on another: the “friendship” discipline [24, 8] imposes modular obligations on both
dependee and dependant, so (1) is maintained even when an invariant I depends on non-
owned objects. This discipline has been successfully applied to several design patterns
including iterators and Subject/View, but it does not seem likely that there is a single
such discipline sufficiently general to handle every situation. I believe that by using
auxiliary state to record encapsulation boundaries for heap structure, we can formalize
a number of generally applicable specification patterns. Interactive theorem proving
can be used to show that the associated global invariant is a consequent of the pat-
tern’s stipulated annotation discipline. Automated first-order provers may then be used
to discharge the assertions in particular instances of the pattern.

3 Some challenges and milestones

The JML specification language is being used in a number of verification systems.
There is impressive agreement about syntax but the semantics is neither formalized
nor consistent between projects. Within a 5-year time frame it should be possible to
provide a foundational logic for JML, encompassing encapsulation (via scope and via
auxiliary state), reentrancy, and behavioral subtyping. Concurrency specification is less
developed but a sound treatment using strong atomicity assumptions should be within
reach [29].

Why are heap regions second class? In separation logic, quantification over pred-
icates is needed for interesting specifications, in part because patterns of heap struc-
ture are expressed using separation at the level of predicates. Moreover, sound rea-
soning about invariants depends on them being supported by a definite region of the
heap [25]—why not expressions describing regions?

5

I am aware of no convincing functional specifications for basic design patterns such
as the Visitor and Observer pattern. Are there useful first-order specifications? Higher
order? Absent a general functional specification, how can an instance of the pattern be
specified? In five years it should be possible to verify absence of runtime errors in a
10Kloc Java application making use of inheritance and design patterns such as these.

4 Related projects

The ownership/inv discipline is part of the Boogie methodology being implemented in
the Spec# verifying compiler. My work has been done in ongoing collaboration with
the Spec# team. We also worked out a theory and static analysis to soundly allow spec-
ifications to include calls to methods that have side effects that are not observable in the
context of the specification [9, 23].

Anindya Banerjee and I have adapted the discipline to support representation inde-
pendence [6], i.e., soundness of simulations for proof of program equivalence. (See also
the tutorial [21].) Although such proofs are commonplace, I am not aware of language
based verification tools that support relational properties. I recently showed how to use
ghost fields to encode relational properties as ordinary verification conditions for suit-
able composition of a pair of programs [22], extending previous work [17, 27, 18] to
encompass Java-like programs.

With NSF funding, Gary Leavens and I are working on semantics for core features
of JML and aim to justify its rules on behavioral subtyping. We also hope to renew my
collaboration with Augusto Sampaio and his colleagues at University of Pernambuco,
Brazil, in which we developed a refinement calculus for a subset of Java [12, 13, 14].
They have implemented a refactoring tool on this basis.

Anindya Banerjee and I are also working on secure information flow analysis for
Java, attempting to achieve more flexible policy by taking into account access con-
trol [5]. I used PVS to verify correctness of the analysis algorithm. With my student
Qi Sun we developed an algorithm for modular inference of security levels [30]. Qi
Sun is implementing a prototype and using the analysis for checking observational pu-
rity [9]. I’m working with Gilles Barthe and Tamara Rezk, INRIA Sophia-Antipolis, on
security-type preserving compilation.

References

[1] J. Aldrich and C. Chambers. Ownership domains: Separating aliasing policy from mecha-
nism. In European Conference on Object-Oriented Programming (ECOOP), 1–25, 2004.

[2] A. Banerjee, N. Heintze, and J. G. Riecke. Design and correctness of program transfor-
mations based on control-flow analysis. In Intl. Symp. on Theoretical Aspects of Computer
Software, 420–447, Oct. 2001. LNCS 2215.

[3] A. Banerjee and D. A. Naumann. Ownership confinement ensures representation indepen-
dence for object-oriented programs. Journal of the ACM, 2002. Accepted, revision pending.
Extended version of [4].

[4] A. Banerjee and D. A. Naumann. Representation independence, confinement and access
control. In POPL, 166–177, 2002.

[5] A. Banerjee and D. A. Naumann. Stack-based access control for secure information flow.
Journal of Functional Programming, 15(2):131–177, 2003.

6

[6] A. Banerjee and D. A. Naumann. State based ownership, reentrance, and encapsulation. In
European Conference on Object-Oriented Programming (ECOOP), 2005.

[7] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification of
object-oriented programs with invariants. Journal of Object Technology, 3(6):27–56, 2004.
Special issue: ECOOP 2003 workshop on Formal Techniques for Java-like Programs.

[8] M. Barnett and D. A. Naumann. Friends need a bit more: Maintaining invariants over shared
state. In D. Kozen, editor, Mathematics of Program Construction, 54–84, 2004.

[9] M. Barnett, D. A. Naumann, W. Schulte, and Q. Sun. 99.44% pure: Useful abstractions in
specifications. In ECOOP workshop on Formal Techniques for Java-like Programs (FTfJP),
2004. Technical Report NIII-R0426, University of Nijmegen; journal version submitted.

[10] G. Bierman and M. Parkinson. Separation logic and abstraction. In POPL, 247–258, 2005.
[11] L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-logic typing and higher-

order frame rules. In LICS, 260–269, 2005.
[12] P. Borba, A. Sampaio, A. Cavalcanti, and M. Cornélio. Algebraic reasoning for object-

oriented programming. Sci. Comput. Programming, 52(1-3):53–100, 2004.
[13] P. H. M. Borba, A. C. A. Sampaio, and M. L. Cornélio. A refinement algebra for object-

oriented programming. In L. Cardelli, editor, European Conference on Object-oriented
Programming (ECOOP), number 2743 in LNCS, 457–482, 2003.

[14] A. L. C. Cavalcanti and D. A. Naumann. Forward simulation for data refinement of classes.
In L. Eriksson and P. A. Lindsay, editors, Formal Methods Europe, volume 2391 of LNCS,
471–490, 2002.

[15] D. Clarke. Object ownership and containment. Dissertation, Computer Science and Engi-
neering, University of New South Wales, Australia, 2001.

[16] R. DeLine and M. Fähndrich. The Fugue protocol checker: Is your software baroque?
Available from http://research.microsoft.com/˜maf/papers.html, 2003.

[17] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[18] D. Gries. Data refinement and the tranform. In M. Broy, editor, Program Design Calculi.

Springer, 1993. International Summer School at Marktoberdorf.
[19] K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In European Confer-

ence on Object-Oriented Programming (ECOOP), 491–516, 2004.
[20] D. A. Naumann. Predicate transformer semantics of a higher order imperative language

with record subtyping. Sci. Comput. Programming, 41(1):1–51, 2001.
[21] D. A. Naumann. Assertion-based encapsulation, object invariants and simulations. In

FMCO post-proceedings, 2005.
[22] D. A. Naumann. From coupling relations to mated invariants for secure information flow

and data abstraction. Submitted for publication, July 2005.
[23] D. A. Naumann. Observational purity and encapsulation. In Fundamental Aspects of Soft-

ware Engineering (FASE), 190–204, 2005.
[24] D. A. Naumann and M. Barnett. Towards imperative modules: Reasoning about invariants

and sharing of mutable state (extended abstract). In LICS, 313–323, 2004.
[25] P. O’Hearn, H. Yang, and J. Reynolds. Separation and information hiding. In POPL, 268–

280, 2004.
[26] J. C. Reynolds. Definitional interpreters for higher-order programming languages. In Pro-

ceedings of the ACM Annual Conference, volume 2, 717–740, New York, 1972. ACM.
[27] J. C. Reynolds. The Craft of Programming. Prentice-Hall, 1981.
[28] J. C. Reynolds. The essence of Algol. In J. W. de Bakker and J. C. van Vliet, editors,

Algorithmic Languages. North-Holland, 1981.
[29] E. Rodríguez, M. Dwyer, C. Flanagan, J. Hatcliff, G. T. Leavens, and F. Robby. Extending

JML for modular specification and verification of multi-threaded programs. In ECOOP
2005.

[30] Q. Sun, A. Banerjee, and D. A. Naumann. Modular and constraint-based information flow
inference for an object-oriented language. In R. Giacobazzi, editor, Static Analysis Sympo-
sium (SAS), volume 3148 of LNCS, 84–99. Springer-Verlag, 2004.

