
Performance Validation on Multicore Mobile Devices

Thomas Hubbard, Raimondas Lencevicius, Edu Metz, Gopal Raghavan

Nokia Research Center, 5 Wayside Road, Burlington, MA 01803, USA
Thomas.Hubbard@nokia.com Raimondas.Lencevicius@nokia.com

Edu.Metz@nokia.com Gopal.Raghavan@nokia.com

Abstract. The validation of modern software systems on mobile devices needs
to incorporate both functional and non-functional requirements. While some
progress has been made in validating performance (including power
consumption) on current mobile devices, future mobile devices will incorporate
multiple processing units, more complex software and hardware that will raise
additional challenges. This paper outlines ideas for future directions in
performance validation on multicore devices, based on the current work in
model-based validation, application state monitoring and performance
assertions.

1 Motivation

Today personal communication devices are more than voice call terminals. Mobile
phones serve as platforms for a variety of mobile applications including text and
picture messaging as well as personal information management, including data
synchronization with remote servers and desktop computers. Many mobile phones
today are equipped with imaging devices and are capable of taking still images and
video clips. The images may be sent over wireless networks to other phones or may
be transferred to a remote server or a desktop computer for storage or forwarding.
Mobile phones also have a number of local connectivity interfaces such as USB,
Bluetooth, and WLAN that can be used for a variety of applications involving local
data transfer, remote execution, and other types of interaction with surrounding
computing resources. For example, a phone can serve as a wireless modem for a
laptop computer over Bluetooth connecting it to a wide area network over circuit
switched data call or GPRS (General Packet Radio Service) packet data connection.

The above description shows that mobile devices host complex software systems
subject to numerous non-functional requirements. This paper concentrates on
performance requirements. In particular we focus on two areas of performance:
software response time and power consumption, although our methods may be also
applicable to other performance areas, such as memory consumption.

Software response time and power consumption requirements are somewhat at
odds with each other: decreasing response time by using more powerful hardware
usually means increased power consumption, while decreasing power consumption
may lead to slower response times. However, they are tightly connected, since they
both depend on the hardware specifications and on the software execution.

Both of these requirements have been partially ignored in the generic computing
environments subject to Moore’s law and constantly connected to power outlets. In a
mobile environment, both are very important. Mobile device processors lack the
speed of their personal computer counterparts for cost and size reasons, while the
mobile software is as complicated as the software running on desktop computers.
This forces mobile application developers to spend a lot of time optimizing software
performance. Mobile device power consumption is primarily important for two
critical reasons: battery lifetime and heat dissipation. Extending battery lifetime
supports other non-functional requirements such as usability and availability of the
device since the device does not have to be connected to the power outlet and charged
as often. Heat dissipation is a key requirement because if too much heat is dissipated
in too short amount of time, the device may overheat. It then has to be shut down or it
risks being destroyed.

While some approaches for performance validation in mobile devices have been
proposed [9][11], additional research is needed in the future. An important issue in
the near future is the upcoming use of multiple processors on a single mobile device.
While some mobile devices already use two general CPUs and two DSPs, devices
with even more processors are projected in the future. More and more complex
software is developed for mobile devices, which requires high performance
processors. However, such processors consume a lot of power. A single processor
needed to satisfy the application power needs in the next couple years would consume
about 800mW, which is a considerable amount of power from battery capacity and
heat dissipation point of view. Replacing such a processor with multiple slower and
more energy efficient processors becomes a realistic alternative. ARM has already
released MPCore [1] multicore solution that supports such approach. Even in the PC
industry Intel and AMD are moving towards multiprocessor solutions in their future
processor roadmaps [6].

This move towards multicore systems brings new challenges to non-functional
requirement validation. The rest of this paper describes these challenges and proposes
possible adaptation and extension of current research techniques for multicore
systems.

Section 2 outlines an existing method of validating power consumption on mobile
devices. Section 3 then describes the challenges of applying current methods to
complex devices in the future. Sections 4 and 5 propose two new methods to deal
with complexities described: application state monitoring and performance assertions.
We finish with related work and conclusions.

2 Energy Consumption Validation With Power Profiles

It may be possible to create performance validation methods for multicore mobile
devices by extending current approaches [9][11]. Already now, performance
validation has to take into account the multiple hardware devices controlled by the
software. These hardware devices have a large influence on the functionality and
performance of the system. For example, an audio player is a simple application that
uses a number of devices: LCD, backlight, flash storage, RAM memory, CPU, DSP,

speakers, keypad, and headset. If the audio is fetched from the network then the
wireless modem must be used as well. All of these devices affect response time,
throughput and power consumed by the audio player. Validating performance for
such a device may be not very different from validation for upcoming multicore
devices. The remainder of this section reviews the energy validation approach we
have proposed previously [9].

Our energy consumption validation approach consists of three parts: power
requirements, a device power model, and system power measurements.

Using this approach, the device’s software is modeled as a set of run-time
functions that are executed, possibly in parallel. A set of hardware devices is
associated with software functions. The efficient energy consumption requirement is
that only hardware devices associated with active software functions should be active.
In other words, any device not associated with the active software function should be
inactive.

The device being validated is modeled as a collection of hierarchical state
machines [2] that represent the power consuming devices in the system. Each device,
or a component, is described as a state machine containing a set of power functions.

For example, let us consider the model of an audio subsystem. Figure 1 represents
the state machine of an abstract audio subsystem component. It shows that the
subsystem can be in the “Audio Idle” state or in the “Audio Standby” state. The
“Audio Standby” state shows the nesting of parallel sub-states that describe
microphone and earpiece activity. Looking at the parallel states, it is clear that the
microphone and the earpiece can transition independently between active and idle
states when the audio subsystem is in the “Audio Standby” state.

Audio Idle

Microphone
 Idle

Microphone
 Active

Audio Standby

Microphone

Earpiece Earpiece
Idle

Earpiece
Active

Figure 1. Audio subsystem state transition model

Every state and transition in the state machine has an associated power level
function. In the simplest case, the power level function is a constant for a state and
zero for a transition. The power consumption in a state may also depend on
parameters. For example, the power consumption in a processor depends on executed

instructions, cache misses, memory accesses, etc. The power consumption in a radio
antenna depends on the transmission frequency, signal strength, transmission protocol
and other parameters. It is possible to use only constant power functions and to model
any parameter dependencies by introducing additional states and transitions.
However, such approach is cumbersome. For example, while a very detailed state
transition diagram could potentially model the processor power consumption, such
diagram would have enormous number of states and would be difficult to construct
and understand. Non-constant power functions allow us to use higher-level system
abstractions in state transition diagrams.

The power function of a composite state combines the power functions of the
state's components. For example, the Audio Standby state's power function combines
the constant standby power of the audio subsystem PConstantAudioStandby and the power
functions of the microphone Pmicrophone and the earpiece Pearpiece:

PAudioStandby = PConstantAudioStandby ° Pmicrophone ° Pearpiece
In simple cases, the composite function is a sum of the component functions.

Transitions between the power states in the model are controlled by global system
events. These events are applied to all concurrent parts of the state machine so that
when an event occurs, all parts perform the state transition triggered by the event. The
overall power consumption of the entire system can then easily be determined by
examining the power function of each state in the system.

In order to perform energy requirement validation the following information is
needed: the model described above, the observation of the global system event
triggers that generate state transitions, and the power measurements at the time of the
trigger. The events are observed by using software traces. The power measurements
are part of a power measurement test framework. When validation is being
performed, the events observed from the trace are applied to the model in time
sequence. At each point in time, the calculated power function of the model is
compared to the measured power of the system. If there is any discrepancy between
the actual and the modeled power levels, it means that the efficient energy
consumption requirement is violated. Further analysis can indicate whether the
system implementation is faulty or the system model is incorrect.

3 Challenges of Validating Complex Devices

Adjusting the approach described in section 2 for multicore devices is simple in
principle. It only requires inclusion of the multicore hardware model into the
hierarchical state machines. However, in practice this is not straightforward, because
the hardware model and the relationship of the software to the hardware become
much more complex in multicore devices. For example, resource conflicts have to be
modeled when multiple processors access common bus, memory or peripherals.
Timing relationships among multiple processors have to be modeled at very fine grain
level, which leads to very fine grain (machine instruction level) modeling of software
as well.

These issues are not unique to multicore devices. General complexity of hardware
devices is increasing due to advanced features and power savings functionality. For

example, new processors allow multiple voltage and frequency settings based on the
current processing demands of the device. Modeling of these processors will be more
complex, since the transition times between voltage and frequency levels must be
modeled as well as any lag time when moving from high frequency to low frequency
states. WLAN adapters have different modes of operation, such as power save mode,
constant aware mode, and so on. Each of these modes has different capabilities and
power profiles. This means that hardware models become much more complex and
building them may become a bottleneck in power validation process.

To illustrate these issues, let us consider an example of validating the power
consumption for a web browser downloading five web pages from the network. The
browser consists of 2 processes and uses the CPU, RAM, flash storage, LCD,
backlight (at various brightness levels), keypad, and wireless modem over the entire
test. The test takes 5 minutes to complete. During that 5-minute period on a typical
mobile device with no other foreground application running, 42 threads belonging to
33 different processes are scheduled, not counting the browser. Also due to the
asynchronous nature of wireless protocols and embedded devices many interrupts are
scheduled causing the browser to suspend. On some executions of the tests, some
thread not belonging to the browser may have previously activated the wireless
modem. In such case, a browser thread does not have to do this again. In other test
runs the browser may have to perform this power costly function thereby changing
the power consumption. This results in a very complex system whose performance
still needs to be validated.

Matching the software with the hardware is a non-trivial issue. It is easy to do for
single core and multicore CPUs, since the operating system scheduler generally keeps
track of which process or thread is active. For other resources reconciling the
software using a resource with the resource requires a few levels of indirection. For
example, under Linux it takes one call to enter system space and interact with the
driver, and then the return call requires a callback to the kernel followed by a thread
reschedule to the caller. In other, microkernel operating systems, for example,
Symbian, this involves more levels of indirection and the application-resource
mapping is difficult to track due to interactions with intermediate system servers.

Due to these considerations we cannot directly use the approach from section 2 for
complex multicore devices. We need to find ways to adjust it so that it becomes
applicable in practice. Sections 4 and 5 describe two possible directions.

4 Application State Based Validation

One way to resolve the issues raised in previous section would be to abstract the
power consumption validation to the level of application states.

Generally, applications are specified as a set of features and requirements on those
features. A logical state of an application can be viewed as a set of paths that combine
to accomplish a goal and has a meaningful characteristic use of power and resources.
This can be represented as a simple grammar in Bachus Naur form:

<application> ::= <state> { <state> }
<state> ::= <path> {<path>}
<path> ::= <instruction> {<instruction>}
The application level is too coarse for performance validation, while paths and

instructions are too complex and granular to validate effectively. For this reason we
propose to validate power and resource use at the application state level. An
application can be instrumented to track application states and their transitions
together with resources used in every state.

a

b

c Load Page Load Page Load Page Load PageLoad Page

a

b

c

a

b

c Load Page Load Page Load Page Load PageLoad Page

Figure 2: Application State Technique

Consider Figure 2 that shows the information obtained from an executed
application, including the application state information and power measurements. In
Figure 2, a) represents the power measurements taken from the browser test described
in section 3, b) represents time slices of activity of the system (each color in the
actual visualization represents a different thread in the system), and c) represents the
different states that the browser enters during the verification process. In this
example, the “Load Page” application state uses the CPU, RAM disk (for caching),
Backlight (level 2), LCD, and wireless modem. Information about all the application
states in the system along with software traces indicating which application is using
which resource makes finding violations of power requirements more
straightforward. The power consumed by the devices that an application is using in
each state can be compared to the power consumption model abstracted to the
application state level.

A possible drawback of this approach is that application states are more abstract
than paths or instructions. Therefore the modeled power consumption may be
approximate. The comparison of the model to the measurements would need to use
some analytic approximate comparison techniques.

5 Assertion Based Validation

An alternative approach to the application-state based validation is to use
performance assertions. Assertions have long been used to validate the functionality
of software systems [4][12]. Because assertions became well-known and easy to use
tool, researchers and practitioners tried to extend them for validation of non-
functional requirements, such as performance [10][15]. Such assertions track the

software events corresponding to the ones specified in requirements and check the
performance constraints. For example, a constraint “Deleting a number of scheduled
meetings in a calendar application should take less than 1 second plus 10 ms for each
deleted meeting”, can be checked by a performance assertion:

int Calendar::calendarStartDeleteFunction (…)
{
 …

pa_start(CALENDAR_DELETE);
…

}

int Calendar::calendarFinishedDeletingFunction (…)
{
 …

pa_end(CALENDAR_DELETE,
assertion_interval(CALENDAR_DELETE)
 < 1000 + numberdeleted * 10);
…

}
Here the pa_start event starts the assertion interval and pa_end event finishes it

and checks the assertion. We have proposed a performance assertion framework for
mobile devices that handles assertions in a multitasking environment (for example,
Symbian OS [14] that uses client-server model inside the device) and resolves a
number of other issues with previous performance assertion proposals [8].

Performance assertions allow programmers to specify performance constraints
corresponding to the requirements directly in program code. For example, the
following constraints may be specified and checked:

1. During GPRS session lower layer packets arrive every 10 ms.
2. Screen redraw should take no more than 10% of the time needed to insert an

appointment into a calendar application
3. Opening a scheduled meeting in a calendar application should take less than

1 second
4. Reading of a file should take at most 10ms multiplied by the number of blocks

read and multiplied by the ratio of total and consecutive blocks in the file
Assertions incorporate all the parts needed for validation: requirements are

expressed as the assertion constraint and the device model is implicit in the constraint.
The response time is communicated to the assertion checker by the assertion
mechanism. Performance assertions avoid the complexity of profile-based validation
by specifying and checking very specific requirements in a single spot. The
complexity of building the model of the whole system is split into the more
manageable complexity of using implicit partial models inside the assertion formulas.
It remains to be seen whether such shift is justifiable in terms of overall complexity
when numerous assertions are present.

Performance assertions can be adjusted to specify power constraints. Consider the
example constraint we discussed above “Deleting a number of scheduled meetings in
a calendar application should take less than 1 second plus 10 ms for each deleted
meeting”. It could be rewritten in terms of energy model: “Deleting a number of
scheduled meetings in a calendar application should take less than 100mW plus

100µW for each deleted meeting”. The assertion start and end events in the code
would remain almost the same as before:

int Calendar::calendarStartDeleteFunction (…)
{
 …

pa_start(CALENDAR_DELETE);
…

}

int Calendar::calendarFinishedDeletingFunction (…)
{
 …

pa_end(CALENDAR_DELETE,
assertion_interval_power(CALENDAR_DELETE)
 < 100 + numberdeleted * 0.1);
…

}
Instead of time measurements, power measurements would need to be provided to

the assertion checker. Obtaining such measurements inside a device may be
complicated. Additionally care should be taken to exclude energy spent in tasks
unrelated to the one mentioned in a constraint. This is similar to tracking “process
specific” time intervals, where time spent in other processes is excluded from the total
time.

6 Related Work

Researchers from Duke University have proposed an energy consumption model for a
Palm™ device [3], which they used for the Palm™ device simulation, but not for the
validation. We formalized and extended their model using state machine diagrams
and extended message sequence charts [9].

A research group at MIT has implemented JouleTrack [13] - a web based system
for software energy profiling. JouleTrack simulates only the energy used by a
processor in application execution. Such a system could provide a detailed model and
power function for a processor.

Real-time system modeling is a large research field. Our power consumption
model has some similarities with timed transition systems [5] and modecharts [7].
Neither timed transition systems nor modecharts were previously used to model the
energy consumption of the real-time systems.

7 Conclusions

In this paper we presented the position that non-functional requirement validation is
very important for future complex multicore mobile devices. We discussed the
expected validation issues and our ideas for solving these issues based on the current
work in model-based validation, application state monitoring, and performance

assertions. We believe that these approaches outline a feasible path towards solving
the non-functional requirement validation issues in the future.

References

[1] ARM MPCore, http://www.arm.com/products/CPUs/ARM11MPCoreMultiprocessor.html
, 2005

[2] Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide
(Addison-Wesley, 1999).

[3] Cignetti, T., Komarov, K., Ellis, C.: Energy Estimation Tools for the Palm™, Proceedings
of ACM MSWiM 2000: Modeling, Analysis and Simulation of Wireless and Mobile
Systems, August 2000.

[4] Floyd, R.W., Assigning Meanings to Programs, Proceedings of the Symposium in Applied
Mathematics, Vol XIX, pp 19-32, American Mathematical Society, April 1967.

[5] Henzinger, T. A., Manna, Z., Pnueli, A.: Temporal proof methodologies for timed
transition systems. Information and Computation, 112, pp. 273-337, 1994.

[6] Intel Platform 2015,
http://www.intel.com/technology/computing/archinnov/platform2015/?iid=search& ,
2005.

[7] Jahanian, F., Mok, A.: Modechart: A Specification Language for Real-Time Systems,
IEEE Transactions on Software Engineering, vol. 20, no. 12, December 1994.

[8] Lencevicius, R., Metz, E.: Proposal of Performance Assertions for Mobile Devices,
Technical Report, 2005.

[9] Lencevicius, R., Metz, E., Ran, A., Software Validation using Power Profiles, 20th
IASTED International Conference on Applied Informatics (AI 2002), Feb 2002.

[10] Perl, S. E., Performance Assertion Checking, Ph.D. Thesis, MIT, 1992.
[11] Raghavan, G., Salomaki, A., Lencevicius, R., Model Based Estimation and Verification of

Mobile Device Performance, Proceedings of the International Conference on Embedded
Software (EMSOFT 2004), September 2004.

[12] Rosenblum, D. S., Towards a method of programming with assertions, Proceedings of the
14th international conference on Software Engineering, Melbourne, Australia, pp. 92 –
104, 1992

[13] Sinha, A., Chandrakasan, A.: JouleTrack - A Web Based Tool for Software Energy
Profiling, Proceedings of the 38th Design Automation Conference, Las Vegas, June 2001.

[14] Symbian OS, www.symbian.com, 2005.
[15] Vetter, J.; Worley, P.H., Asserting Performance Expectations, Proceedings of the SC2002,

2002.

