
Where is the value in a Program Verifier?

The Systems Assurance Group at QinetiQ in Malvern has used mechanical proof
techniques to verify three successive versions of Typhoon’s flight control laws
implemented in Ada. Approximately 37,000 lines of code were checked against three
different Simulink1 specifications scheduled over 3 processors. Each evolution of the
control laws led to a change to about a third of the Ada source code each time. Just
over 97% of the verification conditions were automatically proven. The remaining 3%
were either manually discharged using a theorem prover, or could not be proven due to
limitations in the tools at that time, or very occasionally were false due to mismatches
between the specification and the code. Most of theses mismatches were due to the
specification not being updated (the code in fact correctly implemented the
requirements). Two important points arise from this experience: the first is that these
implementations had already been subjected to a mature software verification and
validation process when only once did a coding error slip through2; the second is that
the requirements for the flight control laws have been continually evolving in the light
of flight tests and increased aircraft capability.

There is plenty of evidence that poor or immature development processes have led to
poor software products. More often commercial pressures lead to trade-offs between
the time (and cost) spent developing software and the dependability of the final
software product. The evidence from the Typhoon flight control law development
suggests that rigorous conventional development is sufficient for most purposes to
achieve the desired reliability assuming the software specification is correct. This is
supported by further verification work the Systems Assurance Group has performed.
More than 80% of the verification conditions for Typhoon’s autopilot and auto-throttle
have been automatically proven. The remaining verification conditions have been
subject to informal “hand proof”3.

The levels of reliability for Typhoon are so great that the provision of independent
formal verification can be justified. Unfortunately the evidence that the formal proof
provides is qualitative in nature, it does not empirically demonstrate the quantitative
software reliability targets – typically of the order of 10-9 faults per operational hour. Of
course neither can any other development method scientifically demonstrate such a
software reliability target before the software has been operating without change for
many years.

The aim of producing software with zero coding errors that a program verifier could
achieve is not scientifically demonstrable before the software is deployed. Evidence
also suggests that when systems fail it is because of poorly understood requirements
or mistaken assumptions in the specification, or design. This suggests that the
application of Formal Methods is most powerful in the areas of requirements,
specification and design. The Program Verifier challenge would seem to not address a
significant problem, however I do not believe that this is the case.

Program code is the ultimate expression of requirements, specification and design.
Although conventional software development can prove to be very effective, it has also
proven to be expensive. The cost of conventional development and testing also
increases considerably as the consequence of failure grows. Consider the following
model of software development for a system in Figure 1 below.

1 Simulink is a graphical language for control system specification with simulation and
code generation tool support.
2 The coding error was revealed by QinetiQ’s verification method, but turned up first
during rig testing that had started 6 months beforehand.
3 The automated proof has been less successful because the specifications of these
applications are not as mature as the specification for the flight control laws.

Costs of Development
Requirements

Validation

Design

CodeVerification

Passed

Figure 1

The model starts with the requirements, which might be captured by a model that can
be simulated. The simulations would help explore the requirements space and lead to
changes in the model, a different articulation of the requirements, or actual changes to
the requirement in the light of insights gained. Moving around the loop in the model of
the development is relatively inexpensive. At some point, after N iterations of the outer
loop, a development will enter the design phase leading to the inner loop in the model
shown in Figure 1. Code is developed from the design, verified by some means (testing,
Fagan inspections, or whatever) and then probably corrected.

After M iterations of the inner loop of the development, a judgement will be made that
no more is needed and it will move back to the outer loop. At this point requirements
testing will take place. Requirements testing at this stage in the development can be a
very expensive affair possibly employing continual operation of test rigs and test
flights (in the case of aircraft). An error4 found at this stage will mean that a transition
will be made from the outer loop back into the inner loop to correct the identified error.
Unfortunately more inner loop iterations may be necessary before moving back to the
outer loop to repeat requirements testing. After P iterations of the outer loop a
judgement will be made that it has passed and the product can be deployed. The cost
of a residual error not detected within the inner loop is greatly magnified by the
requirements testing in the final outer loop and it leads to further iteration of the inner
loop, possibly introducing more errors.

Two observations arise from this discussion. The first observation is that the
elimination of implementation errors would mean that any errors detected in the final
outer loop must be requirements errors. If a Program Verifier were used, then only one
iteration within the inner loop would be required; further there would be a significant
reduction in costs due to the elimination of residual implementation errors that
otherwise would be detected within the outer loop of requirements testing. The
second observation is that the elimination of requirements errors in general has a
larger impact than the elimination of implementation errors.

4 whether it is due to requirements or has not been detected during verification in the
inner loop

What does this mean for the Program Verifier grand challenge? First the use of formal
techniques supported by tools is important for the reason given above. However how is
a requirement error determined? Ultimately it is a subjective judgement (supported by
a rational argument) that is made because real requirements are rooted within a
human organisation. Even the requirements for an advanced aircraft like Typhoon are
set by socio-economic and political conditions. Technical requirements based on
capabilities derived from an operational analysis still require human judgement about
for example acceptable loss rates or cost-benefit trade-offs. This means that people
with special expertise will be central in judging requirements errors. Formal techniques
and tools have an important role to make them more effective.

A third observation arises from the previous discussion, it is that nearly all
requirements change due to the changes in the business/commercial, political or social
environment. It is a significant problem for many of our systems today that soon after
the system is developed and deployed it suffers from changes in the original
environment it was developed for. This means that software development has to take
evolution of the requirements into account during the system development, especially
for complex systems.

The problem that the Program Verifier challenge addresses can be reduced to a
mechanical procedure. When an error is detected then human intervention is still
important in order to eliminate the class of errors detected, however it is systematic in
nature and the rate of errors detected should diminish over time.

A key observation is that there is a trend towards the automation of code generation
from simulation (and similar) models. The rise of automatic code generation is taking
place for reasons quite separate from the Program Verifier grand challenge, but it could
play a key role to the importance of the challenge. The grand challenge is then to
provide Program Verifiers for commercial automated code generators from modelling
languages into commercial languages. If source code generation and its formal
verification can be automated then the problem of evolving requirements is mitigated
if the cost of re-developing software and verifying it is significantly reduced. However
the most important contribution of the Program Verifier challenge is that it could be
scalable in a way that the elimination of requirements errors cannot be.

Consider the following simplistic, but useful, illustration. Suppose the elimination of
requirement errors through the use formal techniques and human expertise resulted in
a 50% saving in a development. Now consider the limited expertise available. For a
number of development projects totalling £100, 000, 000, 000 (one hundred billion
pounds), it would not be unreasonable to consider that only 1% could be addressed by
the scarce human expertise available. This means that savings of 50% of one billion
pounds could be achieved, a not inconsiderable sum of five hundred million pounds.

The scalability of the result of the Program Verifier challenge means that potentially all
the projects totalling one hundred billion pounds could be addressed. Even a 10%
saving would result in a saving of ten billion pounds. An experiment conducted by
QinetiQ based on the Typhoon development indicates a saving of 30% over the system
development lifecycle [1]. An important aspect of the experiment was to compare costs
to achieve the same outcome, to pass the same set of acceptance tests. This means
that the objective of software verification was not to achieve a failure rate better than
that of the conventional development, rather it was to achieve at least the same
quantifiable failure rate but at significantly less cost.

In order to achieve the potential benefits of the Program Verifier grand challenge a
number of research issues must be addressed, the following constitute a minimum.

• A validated and rigorous measurement framework for comparing costs and
benefits for development processes.

• The development of Program Verifiers for commercial language subsets with
respect to commercially accepted modelling languages, this implies two
supporting objectives:

o language semantics for subsets of commercial languages (such as C and
C++) that are mechanically checkable and sympathetic to program
verification needs;

o model language semantics that are mechanically checkable and
sympathetic to program verification needs.

• Automated proof maintenance to support the evolution of the software.

Much work has already been done in these areas, but the products of these areas needs
to be brought together and put into a coherent framework to support the Program
Verifier challenge. A repository to collate results in this area would be an important
step. The repository should also be used to make a judgement on the fitness for
purpose of products in these areas. For example there are many semantic models for
languages, there are rather fewer that are mechanically verifiable and directly support
software verification. Many aspects of the judgement will be scientifically based,
however some, such as usefulness to industry, will be partly subjective. The repository
would also provide a means of conducting scientific experiments to measure the
effectiveness (through testing) of a program verifier and compare its cost against
historical data in a meaningful way [2] as was done for the Typhoon experiment [1].

Conclusions

The popular prejudice is that formal methods add cost to add reliability, I challenge this
view. There is little evidence to show that a program verifier will make a scientifically
quantifiable improvement in reliability before deployment of a system (the evidence
that the use of a program verifier led to greater reliability 10 or 30 years later is not
useful). Scientific experiments to determine the cost of achieving a quantifiable
reliability target, implicit in an acceptance test criteria, can be conducted with an
appropriate measurement framework. A programme of work to drive down the costs
of verification and validation for commercial models and languages is required. The
trend is towards a set of automatic code generators from commercial modelling
languages that lend themselves to automated verification i.e. a set of program
verifiers.

Systems are becoming more complex increasing the chances that errors will occur at
higher levels, but in order to address this we need secure foundations. Software
verification is important because it provides a solid foundation for Formal Methods to
be applied in the design and requirements phase to gain further benefits.

The Systems Assurance Group has demonstrated the benefits of a program verifier in a
narrow area for a particular modelling language. Requirements analysis of control law
models by developing a Hoare logic for Simulink was based on the original verification
work conducted by QinetiQ [3, 4].

QinetiQ is investigating the use of a mechanically validated semantics for an
industrially relevant subset of C to specify a program verifier. Work to develop a
mechanically checked semantics for an industrially relevant subset of C++ is due to
start in August 2005. Formalisation of “The Mathworks” Stateflow modelling language
for the purposes of software verification is nearing completion. An alternative
semantic treatment for checking critical properties of Stateflow (and Statemate
Statecharts) models is also underway. All this new work needs to be validated through
use on real projects and is not the final answer. Richer semantic models to enable more

sophisticated implementations will be required. More modelling languages, such as
versions of UML, need to be addressed. The development of cost modelling tools and
comparison techniques grounded in a sound theory is required. All of these are worthy
of being part of a Program Verifier grand challenge.

References

[1] N. Tudor, M. Adams, P. Clayton, C. O’Halloran, Auto-coding/Auto-proving flight
control software, Digital Avionics Systems Conference, Salt Lake City, 2004.

[2] Clark, G. D., Caseley, P. R., Powell, A. L., Murdoch, J. , Measurement of Safety
Processes. Incose 2003, Washington USA.

[3] R. J. Boulton, H. Gottliebsen, R. Hardy, T. Kelsy, and U. Martin. Design Verification
for Control Engineering. In E. A. Boiten, J. Derrick, and G. Smith, editors, IFM 2004:
Integrated Formal Methods, volume 2999 of LNCS, pages 21 – 35. Springer-Verlag,
2004. Invited paper.

[4] R. J. Boulton, R. Hardy, and U. Martin. 6th International Workshop on Hybrid
Systems: Computation and Control. A Hoare-Logic for Single-Input Single-Output
Continuous-Time Control Systems, volume 2623 of LNCS, pages 113 – 125. Springer-
Verlag, 2003.

