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Abstract. TheVerifying Compilerchecks the correctness of the program it com-
piles. The workhorse of such a tool is the reasoning engihehndecides validity

of formulae in a suitably chosen logic. This paper discupsssible choices for
this logic, and how to solve the resulting problems.

1 Introduction

The solution to th&rand Challengg@roposed by Tony Hoare [1] is close to millions of
programmers’ daydream: a compiler that automaticallyatstall the bugs in the code.

More realistically, the goal is to prove or refute assedigiven together with the
program. Writing assertions is common practice. It willtegrly remain difficult to
write a specification that is strong enough to capture thegdess intent, but leaving
this problem aside, just checking what we are able to spegifyld be of tremendous
usefulness already.

The way these assertions are specified is intentionallgpesh; this may range from
simplisticassert () statements inserted into the code to a formulae given in pagem
ral logic like LTL to even another higher-level program, wihiserves as specification.
In general, it is to be expected that the specification or #serions themselves will
not be strong enough to serve as inductive invariants fgp lmanstructs. Part of the
challenge, therefore, is to strengthen the property tsval&asoning about the loops.

Manifold methods have been proposed to address this challek sign for the
feasibility of the task is the success of formal verificatiools in the hardware industry.
Introduced in 1981Model Checkindg2, 3] is one of the most commonly used formal
verification technique in a commercial setting. It's mairvaatage is automation. In
contrast to interactive theorem proving, no manual efforéguired. However, it suffers
from the state explosion problem. In case of BDD-based syimbmdel checking this
problem manifests itself in the form of unmanageably lar§oB [4].

This problem is partly addressed by a formal verificatiomtegue calledBounded
Model CheckindBMC) [5]. In BMC, the transition relation for a complex dgsiand
its specification are jointly unwound to obtain a formula,iethis then checked for
satisfiability. This process terminates when the lengtthefotential counterexample
exceeds its completeness threshold (i.e., is sufficieotly to ensure that no counterex-
ample exists [6]) or when the SAT procedure exceeds its tinmeesnory bounds. BMC
has been used successfully to find subtle errors in very Iadysstrial circuits [7, 8].

BMC has recently been adopted to software verification as. @&8MC [9] un-
winds sequential ANSI-C programs, flattens the resultityéctor logic formula, and



passes the resulting propositional formula to a SAT-soIVeBMC, developed at IBM
Research, is a version of CBMC extended with support forattheel programs [10].
Saturn [11] and F-8FT [12] implement similar algorithms. An application of BMC to
web applications is reported in [13].

The disadvantage of BMC is that it is typically only applit@kor refutation; the
completeness threshold [6] is too large for most practitsthinces. The goal of théer-
ifying Compiler however, is verification, and not refutation. In indudtpeactice, the
principal method for proving properties é&bstraction Abstraction techniques reduce
the state space by mapping the set of states of the actualatersystem to an abstract,
and smaller, set of states in a way that preserves the relegaaviors of the system.

Predicate abstractiofil4, 15] is one of the most popular and widely applied meth-
ods for systematic abstraction of programs. It abstradis loya only keeping track of
certain predicates on the data. Each predicate is repezsbgita Boolean variable in
the abstract program, while the original data variablesetireinated. Verification of
a software system with predicate abstraction consists étcacting and evaluating a
finite-state system that is an abstraction of the originatesy with respect to a set of
predicates.

The abstraction refinement process using predicate atistrdras been promoted
by the success of the,8Mm project at Microsoft Research [16]. One starts with a coarse
abstraction, and if it is found that an error-trace repoligdhe model checker is not
realistic, the error trace is used to refine the abstractramngand the process pro-
ceeds until no spurious error traces can be found. The astejas of the loop follow
theabstract-verify-refingparadigm and depend on the abstraction and refinement tech-
niques used.

The workhorse of both BMC and predicate abstraction is tlasaring engine,
which decides validity of formulae in a suitably chosen todihis paper discusses
possible choices for this logic, and how to solve the resgltiroblems.

2 Decision Procedures for Program Verification

2.1 Existing Approaches

Almost all program verification engines, such as symboliddeiacheckers and ad-
vanced static checking tools, employ automatic theoremgreofor symbolic reason-
ing. For example, the static checkers E&@\J [17] and BoOGIE [18] use the Sim-
plify [19] theorem prover to verify user-supplied invarian

The S Am [20-25] software model-checker usesrATO [26] for symbolic simu-
lation of C programs. The BLAST [27] and MAGIC [28] tools usenlify for abstrac-
tion, simulation and refinement. Other examples includérthest [29] tool, which uses
the PVS [30] theorem prover. Further decision procedured irsprogram verification
are CVC-Lite [31], ICS [32] and Verifun [33].

However, the fit between the program analyzer and the theprewer is not always
ideal. The problem is that the theorem provers are typig@igred towards efficiency
in the mathematical theories, such as linear arithmetic theeintegers. In reality, pro-
gram analyzers rarely need reasoning for unbounded irgelgeearity can also be too



limiting in some cases. Moreover, because linear arithoymier the integers is not a
convex theory (arestriction imposed by the Nelson-Opper&iostak theory combina-
tion frameworks), the real numbers are often used insteadr&mn analyzers, however,
need reasoning for the reals even less than they do for tbgedrs.

The program analyzers must consider a number of issuesrthabteasily mapped
into the logics supported by the theorem provers. Thesesssiclude pointers, pointer
arithmetic, structures, unions, and the potential refestiop between these features.

In [34], we proposed the use of propositional SAT-solvers asasoning engine
for program verification. The astonishing progress SAT exdvmade in the past few
years is given in [1] as a reason why the grand challenge sitfieetoday. Solvers such
as ZChaff [35] can now solve many instances with hundredsamigands of variables
and millions of clauses. The arithmetic operators in thenida are replaced by cor-
responding circuits. The resulting net-list is convertei ICNF and passed to a SAT
solver. This allows supporting all operators as definedéANSI-C standard.

In [36], we report experimental results that quantify theauat of replacing Zp-
ATO, a decision procedure for integers, with Cogent, a decigiogedure built using
a SAT solver: The increased precision of Cogent improvep#rrmance of 5am,
while the support for bit-level operators resulted in thecdvery of a previously un-
known bug in a Windows device driver.

This approach is currently state-of-the-art for decidirdjdity of formulae in a
logic supporting bit-vector operators. It is implementgddmgent and CVC-Lite, while
ICS is still using BDDs to reason about this logic.

2.2 Future Work
The existing approach is clearly not satisfying:

1. Firstof all, the word-level information about the valiedis lost when splitting into
bits. A solver exploiting this structure is highly desirab\Word-level SAT-solvers
(sometimes called circuit-level SAT solvers) attempt tdrads this problems, but
provide only a very small subset of the required logic. Inesitd compute predicate
images or to perform a fixed-point computation, we need teesalquantification
(or projection) problem, not a decision problem, which {sitwlly considered to be
harder than the decision problem. We describe a proof-tggawach to perform
an approximative existential quantification of formulaebitrvector logic at the
word-level in section 3.

2. Second, the logic supported by this approach is still offtceent. A major goal
of a Verifying Compileris to show pointer-safety. In the presence of dynamic data
structures, this requires support for a logic such as sépatagic [37]. The combi-
nation of such a non-standard logic with bit-vector logiaijint efficient decision
procedure is a challenging problem.

3. Programs involving complex data structures will ceftairequire formulae that
use quantifiers, e.g., to quantify over array indices. Duéh&ohigh complexity
of these decision problems, there are currently no prdatieaision procedures
available. The progress solvers for QBF (quantified booleanulae) is making is
encouraging, and promises to allow new applications jush@progress of SAT-
solvers did.



3 Word-Level Reasoning for Bit-Vectors

3.1 Encoding Decision Problems into Propositional Logic

SAT solvers have become an integral part of all modern dactigiocedures. There are
two different ways to compute an encoding of a decision ol into propositional
logic. In both cases, the propositional pagt,. of the formula is converted into CNF
first.

Definition 1. Let ¢ denote a formula. The set of all atomsdgrthat are not Boolean
identifiers is denoted byl(¢). ThePropositional Encoding.,. of a bit-vector formula
¢ is obtained by replacing all atoms € A(¢) by fresh Boolean identifiers,, .. ., e,,
wherer = | A(¢)|. The atom replaced by; is denoted byA(e;).

As an example, the propositional encodingof (z = y)A((a®b = c)V(x # y))
iser A ez V—er), andA(¢) ={z =y,a®b=c}.

We denote the vector of the variablés = {ey,...,e,} by €. Furthermore, let
14 (e) denote the atora with polarity p:

Ya(e) 1= {“ o (1)

—q : otherwise

Lazy vs. Eager Encoding&inear-time algorithms for computing CNF faf.,. are
well-known [38]. All decision procedures transforsg,,. into CNF this way. The algo-
rithms differ in how the non-propositional part is handled.

The vector of variables : A(¢) — {true,false} as defined above denotes a
truth assignment to the atomsdn Let ¥ 4, (€) denote the conjunction of the atoms
a; € A(¢) where theu; are in the polarity given by (a;):

Wag)(@) =\ Ya,(ei) 2)
=1

An Eager Encodingonsiders all possible truth assignmeatsefore invoking the
SAT solver, and computes a Boolean constrainte) such that

or(€) = Wup(e) (3)

The number of cases considered while buildifyg can often be dramatically re-
duced by exploiting the polarity information af i.e., whether appears in negated
form or without negation in the negation normal form (NNF)d@fAfter computing
o, ¢ is conjoined withe.,,., and passed to a SAT solver. A prominent example of a
decision procedure implemented using an eager encodinGlism[39].

A Lazy Encodingneans that a series of encodings, ¢ and so on withp =

¢ is built. Most tools implementing a lazy encoding start offtwg! = ¢epc. In
each iterationg’, is passed to the SAT solver. If the SAT solver determipiggo be
unsatisfiable, so ig. If the SAT solver determines; to be satisfiable, it also provides
a satisfying assignment, and thus, an assignmfeiot.A(¢).



The algorithm proceeds by checkingﬂﬁqs(éi) is satisfiable. If sog is satisfiable,
and the algorithm terminates. If not so, a subset of the atdhis .A(¢) is determined,
which is already unsatisfiable undgr The algorithm builds &locking clauseé, which
prohibits this truth assignment td’. The next encoding:"" is ¢% A b. Since the
formula becomes only stronger, the algorithm can be tigihtiggrated into one SAT-
solver run, which preserves the learning done in prior fiens.

Among others, CVC-Lite [31] implements a lazy encoding déger linear arith-
metic. The decision problem for the conjunctién(e) is solved using the Omega
test, which is described in the next section.

3.2 Encodings from Proofs

A proof is a sequence of transformations of facts. The t@nsétions follow specific
rules, i.e., proof rules, which are usually derived from aiomnatization of the logic at
hand. A proof of a formula in a particular logic can be used to obtain another formula
¢p in propositional logic that is valid if and only if the origathformula is valid, i.e.,
¢ < ¢p.Let.Z denote the set of facts used in the proof.

Given a proof ofp, a propositional encoding @f can be obtained as follows:

1. Assign a fresh propositional variahle to each factf € .# that occurs anywhere
in the proof.

2. For each proof stefy generate a constraint that captures the dependencies be-
tween the facts. As an example, the derivation

A B
C

with variablesv 4, v, ve for the factsA, B, andC' generates the constraifita A
vp) — V.
3. The formulapp is obtained by conjoining the constraints:

gbp = /\Ci

However, the generation of such the proof is often difficulbégin with. In particu-
lar, it often suffers from a blowup due to case-splittingsediby the Boolean structure
present inp. This is addressed by a technique introduced by Strichmpd0inHis pa-
per describes an eager encoding of linear arithmetic ontgaimumbers and integers
into propositional logic using the Fourier-Motzkin traoshation for the reals and the
Omega-Test [41] for the integers.

The idea of [40] is applicable to any proof-generating deaigprocedure:

— Allatoms.A(¢) are passed to the provampletely disregarding the Boolean struc-
ture of ¢, i.e., as if they were conjoined.

— For factsf that are also atoms assigp := e;y.

— The prover must be modified to obtaali possible proofs, i.e., must not terminate
even if the empty clause is resolved.



Since the formula that is passed to the prover does not coatsi propositional
structure, obtaining a proof is considerably simplifiedeTarmula¢ obtained from
the proof as described above is then conjoined with the mitippal encodingpe,..
The conjunction of both is equi-satisfiable WithAs ¢ p A ¢.n. IS purely propositional,
it can be solved by an efficient propositional SAT-solver.

3.3 Existential Abstraction

Let S denote the set of concrete states, d(d,«’) denote the concrete transition
relation. As an example, consider the basic block

i ++;
j=i;

We usez.v to denote the value of the varialten statex. The transition relation
corresponding to this basic block is thehi = z.i + 1 A a2'.j = 2/ 4.

Let IT = {my,...,m,} denote the set of predicates. The abstraction functiar)
maps a concrete statec S to an abstract state € {true, false}":

afz) = (m(z), ..., m(z))

When computing an existential abstraction, the abstradiaiean make a transition
from an abstract stateto 7’ iff there is a transition fronx to 2’ in the concrete model
and z is abstracted t& andz’ is abstracted t@’. Formally, the abstract transition
relation is denoted by.

R:={(z,2")|3x,2’ € S: R(z,2") Na(z) =& ANafa') = 3"} 4)

R is also called the image of the predicafésover R. The formula on the right
hand side can be transformed into CNF by replacing the loitevarithmetic operators
in R anda by arithmetic circuits. Due to the quantification over thatadict states this
corresponds to an all-SAT instance. Solving such instaisagsually exponential in.

As an alternative}z can be computed using a proof. The facts given to the prover
are:

1. All the predicates evaluated over state.e., 7;(x),
2. all the predicates evaluated over stete.e., m;(z'),
3. the atoms in transition relatiaR(x, «').

We then obtainpp as described in section 3.2. Boftiy and ¢.,,. contain fresh
propositional variables for the atorg R) in R, for the predicate#l overx andz’, and
for the factsf € .% found during the derivation. Ltz denote the set of propositional
variables corresponding to atoms/inthat are not predicates, and Iét denote the set
of propositional variables corresponding to fagts .7 that are not predicates.

The propositional variables that do not correspond to pegds are quantified exis-
tentially to obtain the predicate image. lzet denote the vector of variables iy, let



v denote the vector of variables Wy, and letur = |Vi| andur = |Vr| denote the
number of such variables.

R = {(‘fjai‘/)| EliR S {07 1}'“1?7@1:‘ € {O’ 1}NF :
¢enc(i‘7£/7vR) A ¢P(£’ i‘/ﬂ)F)}

Thus, we replaced the existential quantification of cormgpebgram variables, z’ €
S? by an existential quantification fy + 1 Boolean variables. The authors of [42]
report experiments in which this quantification is actuplyformed by means of either
BDDs or the SAT-engine of [34].

The authors of [43] use BDDs to obtain all cubes over the t#&in V-, and then
enumerate these cubes. This operation is again worst-gpeaential.

As motivated above, reasoning for integers is a bad fit fotesgdevel software,
and basically useless to prove properties of hardware. Wedaberefore like a proof-
based method for a bit-vector logic. The main challengeas éimy axiomatization for
a reasonably rich logic permits way too many ways of provimg same fact, an the
procedure as described above relies on enumeraliimpgoofs.

We therefore propose to sacrifice precision in order to be tbieason about bit-
vectors, and compute an over-approximatiordfThis is a commonly applied tech-
nique, e.g., used byLd3m and BLAST. If this over-approximation results in a spurious
transition, it can be refined by any of the existing refinenmaathods, e.g., based on
UNSAT cores as in [44] or based on interpolants as in [45].

One trivial way to obtain an inexpensive over-approximatb?R is, e.g., bounding
the depth of proofs. Future research could, for exampleidan better proof-guiding
heuristics.

()

Example Assume we have, among others, the following derivatiorstule

b&c==10
(alp)&b==0 (6) ()& —= akec (7)
The predicates we consider are == (2&1 = 0) andry == (z&2 = 0), and the

statement to be executeddis=2; .

The facts passed to the prover ael = 0, &2 = 0, /&1 = 0, 2/&2 = 0, and
a2’ = x|2. Figure 1 shows a derivation on the left hand side and on ¢ niand side the
same derivation tree in which the atoms are replaced by fiiepositional variables.
The derivation results in the constraint, — v1) A (v — F), which is equivalent
to —rh. Figure 2 shows a derivation that ends in an existing atpmather tharf. The
constraint generated is equivalentitp— ;.

4 Conclusion

Program verification engines rely on decision proceduresve¥er, despite of many

years of research in this area, the available decision gduyes are not yet geared to-
wards program analysis. Program analysis requires a loijic many features com-

monly not found in today’s decision procedures, such agéditor operators, and ways
to handle structs, unions, and pointers, e.g., separatga.|
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Fig. 1. Derivation of constraints for’

2&1=0 ' =uz|2 1 T
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Fig. 2. Derivation of constraints foir]

The current state-of-the-art for deciding bit-vector tigian ad-hoc approach using
propositional SAT-solvers. Efficient Decision procedutest support a logic as needed
for program analysis is an open problem that has to be sotveddceed in the grand
challenge.
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