
Integrating Theories and Techniques
for Program Modelling, Design and Verification
– Positioning the Research at UNU-IIST in Collaborative

Research on the Verified Software Challenge

Bernard K. Aichernig, He Jifeng, Zhiming Liu and Mike Reed

International Institute for Software Technology
United Nations University, Macao SAR, China

Email: {bka,hjf,lzm,mike}@iist.unu.edu

Abstract. This submission presents our understanding of the Grand
Challenge and propose an agenda on how we will position our research
to contribute to this world-wide collaborative research project.

1 Introduction

The goal of the Verifying Compiler Grand Challenge [16] is very easy to under-
stand. It is to build a verifying compiler that

“uses mathematical and logical reasoning to check the programs that it
compiles.”

The fundamental problems are how to obtain and document the correctness
specification of a program and how to fully automate the verification/checking
of the documented aspects correctness. While accomplishing this goal now re-
quires effort from “(almost) the entire research community” including theoretical
researchers, compiler writers, tool builders, software developers and users, these
two interrelated problems have been the major concern of the formal methods
research community in the past several decades. Each of these two problems is
and will continue to be a focus in the research on the challenge.

For a certain kind of programs, some correctness properties, such as termina-
tion of sequential programs, mutual exclusion, divergence and deadlock freedom
of concurrent systems, are common and have a uniformed specification for all
reasonable models and codes. They can be generated from the specification and
the code and there is no need to document them. Theories and techniques for
verifying these kinds of properties are nearly mature, though a lot of work may
still be required in the areas of efficient and effective decision procedure design.
These techniques are readily applicable to analysis and verification of these prop-
erties of legacy code and open source. This is also the case for typing correctness
for programs written in typed languages.

However, for general correctness properties, the problem of how to specify
and document them is far more challenging. The techniques for their verification



depend on the model that is used for the specification. In some frameworks, one
may translate the code into a specification notation or model and then use
the techniques and tools developed for that notation or model to analyse the
translated code. The model checking tools are based on this approach. With an
approach of this kind, the main difficulties lie in

1. the automated, or even manual, procedure of abstraction in the translation
is difficult, especially with the constraints that the resulting abstract model
can be used for efficient checking,

2. one has to study what, where, when and how the correctness properties, i.e.
“assertions and annotations”, are produced and documented,

3. it is still challenging to identify properties that can be verified composi-
tionally, and to make the specification notation and model to support more
compositional analysis and verification,

4. there is a need of great of research to make the tools effective and efficient
even with specified correctness criterion.

In our view, there is quite a long way for theories and techniques to be mature
for solving the first three problems, and solutions to these problems will be useful
for dealing with the fourth problem.

Some other paradigms have been developed from the idea of proof outlines
based on Hoare Logic. There, correctness properties are documented as assertions
and annotations at certain points of a program. These approaches to some extent
avoid the first problem described above, and either a deductive proof (e.g. with a
theorem prover) or a simulation proof (e.g. by a model checker) can be applied.
It also allows a combination of these two verification techniques. However, the
other three problems remain.

A conclusion that we can draw from the above discussion is that working
towards a Verifying Compiler still needs a great amount of investigation in,
among other areas discussed in the description of the Grand Challenge [16], new
ways of modelling to provide better support to

1. separation of concerns, specification and analysis at different levels of ab-
straction and better compositionality,

2. integration of formal methods with the effective practical engineering meth-
ods,

3. unifying different formal theories of programming and verification to make
it possible for the verifying compiler to “work in combination with other
program development and testing tools” [16],

4. development of design techniques to ease the difficulties in identification and
generation of correctness criterion and the analysis and verification proce-
dures.

This in fact has been the main theme of the research at UNU-IIST, and we can
now focus on this even better directed goal of the Grand Challenge.



2 The Grand Challenge Related Research at UNU-IIST

We outline in this section our approach to the challenge with a discussion on the
research problems, and a summary of progress we have made so far.

Our overall research will be centered on the issues listed at the end of the pre-
vious section in the conclusion of our understanding about the challenge. How-
ever, we will organise the research within the UNU-IIST project on Component-
Based Modelling and Design.

2.1 The theme

We are developing an approach that allows a system to be designed by compos-
ing components. The aim is compositional design, analysis and verification. To
achieve this aim, it is essential that the approach supports multi-view modelling,
and allows separation of concerns. Different concerns are described in different
viewpoints of a system at different levels of abstraction, including interfaces,
functional services, synchronization behaviour, interaction protocols, resource
and timing constraints. Our approach integrates a state-based model of func-
tional behaviour and an event-based model of inter-component interaction. The
state-based model is for white-box specification in support of component design,
and the event-based model is for black-box specification used when composing
components [14].

Multi-view modelling It is crucial that the model supports abstraction with
information hiding so that we can develop refinement and transformation based
design techniques. This will provide theoretical foundation for integration of
the formal design techniques with practical engineering development methods.
Design in this way can preserve correctness to a certain level of abstraction, and
good design techniques and models even support code generation that ensures
certain correctness properties (i.e. being correct by construction [27]) and helps
in generation and documentation of assertions and annotations. Refinement in
this framework characterises the substitutability of one component for another. It
involves all the substitutability of all the aspects, but we should be able to define
and carry out refinement for different features separately, without violating the
correctness of the other aspects. We are investigating different design techniques
for different correctness aspects supported by the refined calculus. We hope that
the refinement calculus permits incremental and iterative design, analysis and
verification. This is obviously important for scaling up the application of the
method to large scale software development, and for the development of efficient
tool support. We believe being incremental and iterative is closely related and
complementary to being compositional, and important for lowering the amount
of specification and verification and the degree of automation.

However, the different aspects of correctness are often related. A big chal-
lenge is to solve the problems of consistency among the specifications of the
different views, and provide solutions for their consistent integration and trans-
formation. The solutions to these problems are needed to provide theoretical



support to development of tools for checking the consistency and carrying out
the transformation and reasoning about the correctness of the transformation.

Multi-view analysis and verification techniques Analysis and verifica-
tion of different aspects of correctness and substitutability have to be carried
out with different techniques and tools. Operational simulation techniques and
model checking tools are believed to be effective for checking correctness, consis-
tency and refinement of interaction protocols, while deductive verification and
theorem provers are found better suited for reasoning about denotational (or
pre and postcondition based) functionality specification. Where fully automated
verification is not possible one has to rely on approximated results. Here, testing
can play a role to confirm the approximately verified property. Another impor-
tant aspects of testing is the validation of the abstract properties to be verified.
Fault-based testing adds an additional dimension to verification. Here, test cases
are designed by mutating the specification to detect faults that violate the spec-
ification [2]. Also, different modelling notations will affect the way of test case
generation. Therefore, The combination of verification, testing and design needs
further exploration.

Integrating component-based and object-oriented techniques A compo-
nent may not have to be designed and implemented in an object-oriented frame-
work. However, the current component technologies such as COM, CORBA, and
Enterprise JavaBeans are all built upon object-oriented programming. Object
programs are now widely used in applications and many of them safety critical.
This project also studies the techniques of modelling, design and verification of
object systems and the construction of component systems on underlying object
systems.

2.2 Initial progress

A number of formal notations and theories have been well-established and proved
themselves effective as tools in dealing with different aspects of computing sys-
tems. For component-based systems, analysis, design and verification can thus
be carried with different techniques and tools. However, integration of compo-
nents requires the integration of the theories for ensuring correctness and substi-
tutability. In particular, we need an underlying execution model of component
systems. UNU-IIST has developed a model and calculus, called rCOS [11], for
component systems [30], The calculus is applied to formal use of UML in re-
quirement analysis [21, 19], design [32], and consistent code generation [24]. In
rCOS, we define a component with provided and required interfaces and their
functional specifications [20, 14]. Composition and refinement of these kind of
components are also defined. The research is based on Hoare and He’s Unifying
Theories of Programming (UTP) [17] and aim to advance UTP to for analysis
of object-oriented programs and component systems. Challenging as it is, the



initial results show that it is promising that “many aspects of correctness of
concurrent and object-oriented programs can be expressed by assertions” [16].

Our approach facilitates assurance of global refinement by local refinement
via integration of the event-based simulation and the state-based refinement.
Global refinement is usually defined as a set containment of system behaviours,
and can be verified deductively within a theorem prover. Local refinement is
based on specification of individual operations, and can be established by simula-
tion techniques using a model checker. Promising results have also been achieved
in unifying different verification methods [1, 9, 23].

The research also indicates what kind of language mechanisms, such as in-
heritance with attribute hiding, method overwriting and method reentry calls,
are likely to cause bugs in a program. They should be avoided if possible and
when they are used assertions should be inserted and verification effort should
be concentrated on these assertions. To fully verify different kinds of correctness
aspects, we require different verification methods (simulation, deduction and
testing) and tools (model checkers, theorem provers and test case generators).

Component-based systems When we specify a component, it is important
to separate different views about the component [20, 14, 13]. From its user’s (i.e.
external) point of view, a component C consists a set of provided services [30].
The syntactic specification of the provided services is described by an interface,
defining the operations that the component provides with their signatures are.
This is also called the syntactic specification of a component. Such a syntactic
specification of a component does not provide any information about the effect,
e.g. the functionality of invoking an operation of a component or the behavior,
i.e. the temporal order of the interface operations, of the component. However,
it describes the syntactic dependency on other components.

rCOS contains notations for the description of the following notions for
component-based systems, which serve different purposes for different people at
different stages of a system development:

– Interfaces: describe the structure nature of a component and are only used
for checking syntactic dependency and compositionality.

– Guarded Designs: specify the behaviours of service operations of an interface.
It describes both the condition imposed on the environment for use of a
service operation, and the behaviours of execution of a service once invoked.

– Protocols: impose the order on use of services of an interface. They describe
the way by which clients can interact with an interface, and are used to avoid
deadlock when putting components together.

– Contracts: are specification of interfaces. A contract associates an interface
to an abstract date model plus a set of functional specifications of its services,
and as well as an interaction protocol.

– Components: are implementations of contracts. The designer of a component
has to ensure that it satisfies its contract. Its code is used by the verifier to
establish this satisfaction relation.



– Combinators: are defined for interfaces, contracts and components so that
they can be composed in different way. Their algebraic properties are used
to verify design of middlewares (such as CORBA) and design patterns.

– Substitutivity: is defined in terms of refinement that integrates both state-
based refinement and event-based simulation.

– Coordinators: are used to coordinate the activities and interactions of a
group of components.

The model provides a definition of consistency among the elements of a contract
and a method for consistency checking. It also allows to extend a contract by
adding more services and imposing more constraints on use of services.

Design and verification of object-oriented Programs We use rCOS to
define an object-oriented language with subtypes, visibility, reference types, in-
heritance, type casting, dynamic binding and polymorphism. The language is
sufficiently similar to Java and C++ and can be used in meaningful case stud-
ies and to capture certain difficulties in modelling object-oriented designs and
programs.

Our semantic framework is class-based and refinement is about correct changes
in structure and methods of classes. The logic is a conservative extension of the
standard predicate logic. We define the traditional programming constructs, such
as conditional, sequential composition and recursion, in the exactly same way as
their counterparts in the imperative programming languages without reference
types. This makes our approaches more accessible to users who are already famil-
iar with the existing imperative languages. Also, all the laws about imperative
commands remain valid without the need of reproving.

The calculus relates the classic notions of refinement and data refinement [3,
15, 26] in imperative languages to refactoring and object-oriented design patterns
for responsibility assignments [8, 18] This takes the initial attempts in formal-
isation of refactoring in [28, 31] a step forward by providing a formal semantic
justification of the soundness of the refactoring rules, and advance the theories
in [4–6, 29] on object-oriented refinement to deal with large scale object-oriented
program refinement with refactoring, functionality delegation, data encapsula-
tion and class decomposition. Within the calculus, we have already proved the
soundness of several design patterns, including Expert pattern, Low Coupling
pattern, and High Cohesion pattern [11].

UML models of requirement and design rCOS is also applied to formal
use of UML in requirement analysis [21, 19], design [32], and consistent code
generation [24]. We have provided a unified semantic definition for UML models
of requirement and design. This semantics framework covers

– Use case model
– Class model
– Object diagram
– Interaction diagram



The unification is important and useful in dealing with consistency between dif-
ferent models. It in fact deals with the most informal aspects of UML, including
description of use cases and the links between different UML diagrams in system
development. On the other hand, the formalism still keeps the roles and views
of these models clearly separate: class models correspond the program state,
while the use case model describes the required services and external behaviour
and the sequence diagram realise the external behaviour with internal object
interactions.

The refinement calculus developed in rCOS is used for transformation of
models that preserve certain properties. The calculus deals with refinement of
class diagrams to increase its capacity in supporting more use cases. This implies
the support to an incremental system development such as the Rational Unified
Process. The formalisation of UML in our notation allows us to transform UML
diagrams consistently and to formally define and reason about transformations of
UML diagrams, such as decomposing a class into several classes, adding classes,
associations, changing multiplicites of associations, etc. Moreover, rCOS also
supports the following refinements to a class diagram:

– adding a new class
– introducing inheritance
– moving an attribute or a method from a class to its direct superclass
– introducing a fresh superclass to an existing class
– copying a method of a class to its direct subclass

Combination of the object-oriented and component-based methods
rCOS [11–13, 22] also provides a consistent combination of the object-oriented
and component-based methods. In general, a component in our proposed model
can be realized by a family of collaborating classes. Therefore, for a component
C, we treat the interface methods of C and the protocol as the specification of
the use cases of the component and the components in environment of C as the
actors of these use cases. The design and implementation of this component can
then be carried out in a UML-based object-oriented framework.

The types of the fields (or attributes) of components can be classes. The
classes and their associations form the information (data) model. This model
can be represented as a UML class diagram and formalized as class declaration
in rCOS [11–13, 22]. The implementation of a component is based on the imple-
mentation of the class model. Also, for example UML2.0, a port of a component
is realized by a class too (a port in an active component is realized by an active
class).

2.3 The research problems and program

The research program of the project is also incremental and iterative and it is
roughly outlined below:

1. start with modelling, design and verification of sequential object systems,



2. deal with components with only interfaces and specification functional ser-
vices

3. add synchronous interactions
4. add asynchronous interactions
5. add coordinators and containers to manage interaction among components
6. deal with resource and timing constraints of embedded systems
7. add features of fault-tolerance, security and survivability
8. extend it to internet-based programming
9. test the techniques with case studies (including analysis of middlewares and

design patterns), and evaluate the results by looking at how it can support
tool development

10. more foundational research include a logic for object-oriented reasoning and
component-based reasoning

In fact the project started two years ago and it will be a long lasting project.
The aims and focus may be adjusted along the progress of the research.

3 International Collaboration

The research will be conducted in a close collaboration with Tata Research De-
velopment and Design Centre, the largest industry research development and
design centre in India. They have a great interest in applying formal methods
in their tool development. UNU-IIST is now establishing a collaboration project
on Scaling up Formal Methods for Large Software Development. We will in-
vestigate how the research results at UNU-IIST in theories and techniques of
program modelling, design and verification can be used in the design of software
development tools at TRDDC. A separate submission focusing on tool support
is also accepted for presentation at this working conference to be considered for
a presentation about the collaboration [25].

UNU-IIST has recently joined the NoE of ARTIST II and the collaboration
with the other partners, such as Aalborg University (Denmark) and Uppsala
University (Sweden) on component-based development and verification will be-
come closer.

We have also a long tradition of collaboration with the University of Macau,
Peking University, Nanjing University and Software Institute of the Chinese
Academy of Sciences, Oxford University, University of Minho (Portugal) and
the University of Leicester (UK).

Acknowledgement: This proposal is made on behalf of all members of the aca-
demic staff at UNU-IIST. We would like to thank our colleagues, Chris George,
Dang Van Hung and Tomasz Janowski for the discussions.

References

1. B. Aichernig and J. He. Testing for design faults. Submitted to Formal Aspect of
Computing. 2005.



2. B.K. Aichernig. Mutation Testing in the Refinement Calculus. Formal Aspect of
Computing. 2003.

3. R. Back and L.J. von Wright. Refinement Calculus. Springer, 1998.
4. R. Back, et al. Class refinement as semantics of correct object substitutability.

Formal Aspect of Computing 2, 18-40, 2000.
5. P. Borba, A. Sampaio and M. Cornelio. A refinement algebra for object-oriented

programming. In Proc of ECOP’2003, Lecture Notes in Computer Science 2743,
457–482, 2003.

6. A. Cavalcanti and D. Naumann. A weakest precondition semantics for an object-
oriented language. Lecture Notes in Computer Science 1709, 1439–1460, 1999.

7. Martin Fowler. Refactoring, Improving the Design of Existing Code. Addison-
Wesley, 2000.

8. E. Gamma, et al. Design Patterns, Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

9. J. He. Linking simulation with refinement. In Proc of the 25th Anniversary of CSP,
Lecture Notes in Computer Science 3525, 61–75, 2005.

10. J. He and C.A.R. Hoare. Unifying theories of concurrency, in Proc of ICTAC’2005,
2005.

11. J. He, Z. Liu, X. Li and S. Qin. A relational model of object oriented programs.
In Proc of APLAS’2004, Lecture Notes in Computer Science 3302,415-437, 2004.

12. J. He, Z. Liu, and X. Li. rCOS: A refinement calculus for object systems. Technical
Report UNU-IIST Report No 322, UNU-IIST, P.O. Box 3058, Macau, March 2005.

13. J. He, Z. Liu, and X. Li. A theory of contracts. Technical Report UNU-IIST
Report No 327, UNU-IIST, P.O. Box 3058, Macau, July 2005.

14. J. He, Z. Liu and X. Li. Component-based software engineering – the Need to
Link Methods and their Theories. In Proc of ICTAC05, Theoretical Aspects of
Computing, the International Colloquium, Lecture Notes in Computer Science
3722, 72-97, 2005.

15. C.A.R. Hoare, et al. Laws of Programming. Communications of the ACM 30: 672–
686, 1987

16. C.A.R. Hoare. The verifying compiler. Journal of ACM, 50(1): 63–69, 2003.
17. C.A.R. Hoare and J. He. Unifying theories of programming. Prentice Hall, 1998.
18. C. Larman. Applying UML and Patterns. Prentice-Hall International, 2001
19. X. Li, Z. Liu, J. He and Q. Long. Generating prototypes from a UML model of

requirements. In Proc of ICDIT’2004, Lecture Notes in Computer Science 3347,
255–265, 2004.

20. Z. Liu, J. He and X. Li. Contract-oriented development of component systems. In
Proc of IFIP WCC-TCS’2004, 349–366, 2004.

21. Z. Liu, J. He, X. Li and Y. Chen. A relational model for object-oriented require-
ments in UML. In Proc of ICFEM’2003, Lecture Notes in Computer Science 2885,
641–665, 2003.

22. Z. Liu, J. He, and X. Li. rCOS: Refinement of component and object systems.
Invited Talk at 3rd International Symposium on Formal Methods for Component
and Object Systems. To Appear in Lecture Notes of Computer Science, 2005.

23. Z. Liu, A. Ravn and X. Li. Unifying proof methodologies of Duration Calculus and
Linear Temporal Logic. Formal Aspect of Computing 16(2), 140–154, 2004.

24. Q. Long, Z. Liu, J. He and X. Li. Consistent code generation from UML model. In
Proc of ASWEC’2005, IEEE Computer Press. 2005.

25. Z. Liu and R. Venky. Tools for formal software engineering. In Proc of IFIP Working
Conference on Program Verifier Challenge, 2005.



26. C.C. Morgan. Programming from Specifications. Prentice Hall, 1994.
27. A. Pnueli. Looking ahead. Workshop on the Verification Grand Challenge, SRI

International, 2005.
28. D.B. Roberts. Practical Analysis for Refactoring. PhD thesis, University of Illinois

at Urbana Champain, 1999.
29. K. Rustan and M. Leino. Recursive object types in a logic of object-oriented pro-

gramming. Lecture Notes in Computer Science 1381, 1998.
30. C. Szyperski. Component Software. Addison Wesley, 1998.
31. L.A. Tokuda. Evolving Object-Oriented Designs with Refactoring. PhD thesis,

University of Texas at Austin, 1999.
32. J. Yang, Q. Long, Z. Liu and X. Liu. A predicative semantic model for integrating

UML models. In Proc of ICTAC’2004, Lecture Notes in Computer Science 3407,
170–186, 2005.


