
A Constructive Approach to Correctness,
Exemplified by a Generator for

Certified Java Card Applets

Alessandro Coglio and Cordell Green

Kestrel Institute, Palo Alto, California, USA
{coglio,green}@kestrel.edu

www.kestrel.edu

1 Position

Our position is that a constructive approach (namely, generating code from
specs) can be a valuable alternative to post-hoc code verification. Our goal is to
have a proof of full functional correctness of the code with respect to its spec. The
automated generation of such a proof, along with the code, is guided by the avail-
ability of the code generation/design process. Generated proofs are checkable by
a small and simple proof checker. A specification-first approach is made more
widely accessible via user-friendly domain-specific notations. Domain-specific re-
strictions also simplify code and proof generation. Our experience with, and user
acceptance of, early versions of the generator described herein, support this po-
sition.

2 Summary

Our approach uses automated construction steps (refinements) that are proven
to have the desired property, in our case functional correctness. We exemplify
this approach with AutoSmart [www.kestrel.edu/jcapplets], our generator for
Java Card applets [java.sun.com/javacard]. AutoSmart converts our domain-
specific specification language, SmartSlang, into the Java Card language. This
approach does not depend upon verifying the generator – a proof is generated
and checked for each applet generated.

AutoSmart first checks consistency properties of the source specification and
then applies a series of transformations to the specification. Proofs are gener-
ated automatically as the transformations are applied. Each proof can then be
checked by a simple proof checker. The correctness of this approach rests upon
the correctness of the checker and of the formal specification of the semantics
of both source and target language, and of course the logic language used to
express the semantics. Only these artifacts need be trusted.

Our Metaslang language [www.specware.org] is used to express the seman-
tics of both source and target languages and to express the correspondence be-
tween the source and target, i.e. “correctness”. Metaslang includes an executable
subset that was used to implement the generator.



2.1 Progress and Outlook

The system is working and in use. The current release (August 2005) includes
the automatic translation from source to target and also includes the semantics
of the source and target languages. Consistency properties of about half of the
axiomatization of the target language have been automatically checked by a the-
orem prover, Snark [www.ai.sri.com/ stickel/snark.html]. Autosmart now
includes a proof checker.

We believe the full system will be completed early next year. We foresee
no scalability problems, having sampled proofs of the various parts. Scalability
results from the simplicity and restriction of the domain-specific language, and
the inherent simplicity of the applets generated. Since we need not deal with
legacy code, we can employ a correct-by-construction approach, which simplifies
the complexity of achieving a correctness guarantee. New tasks being undertaken,
which also appear to be tractable, include the automated generation of a correct
Java Card run-time environment, and the automated generation of the ancillary
materials necessary to achieve certification.

Will this system, Autosmart, when completed, satisfy the Grand Challenge?
Well, it will indeed provide proofs of both functional correctness and also secu-
rity properties of software it produces. And the proofs will be tied to the software
generated. The generator itself need not be proven. It will scale to reasonable
Java Card applets. However, the input specification language is domain-specific
and precludes certain features found in general-purpose languages (e.g. no re-
cursion, no concurrency).

3 The Approach

Consider the automatic translation TR of artifacts written in a source language
S into corresponding artifacts written in a target language T. “Corresponding”
means that a certain relationship must hold between the artifacts. Such a rela-
tionship can be formally expressed in a logical language L, including formaliza-
tions of the semantics of S and T.

An approach to ensure the correctness of TR is to formalize TR in L, and
prove a theorem stating that TR translates S artifacts to T artifacts such that
the desired relationship holds. A concern with this approach is the gap between
the formalization of TR in L and the actual implementation of TR. If TR is hand-
written, then its formalization in L is only a model of the code that implements
TR, and there is the possibility that the code does not behave exactly according
to its model in L.

This concern can be overcome by deriving the code of TR via a provably cor-
rect refinement process that starts from the formalization of TR in L. However,
if TR is sufficiently complex, performing such a derivation can be daunting,
despite the relative maturity of current correct-by-construction technology. In
addition, to play devil’s advocate, the correctness of the TR code would depend
on the tools used to derive it from the formalization of TR in L: who ensures
the correctness of those tools?



Another approach to ensure the correctness of translations operated by TR
is to have TR generate, along with the translation of an S artifact SA into a T
artifact TA, also a proof P in L that the desired relationship between SA and TA
holds. We also need a proof checker for L and two simple “encoders” that map
respectively S and T artifacts to their representations in L. The proof checker
is used to verify that P is a valid proof. The encoders are used to construct the
formula in L that expresses the desired relationship between SA and TA. Finally,
we check that the conclusion of P is the constructed formula. We do not ensure
the correctness of TR in general, but just the correctness of particular artifacts
produced by TR.

In this approach, we only need to trust the following items:

1. the proof checker for L;
2. the formalizations of S and T in L;
3. the formal expression of the desired relationship between S and T artifacts;
4. the encoders of S and T artifacts into their representations in L.

The size and nature of these items makes them easier to trust than the larger,
more complex TR. A proof checker is usually quite small and simple; it can be
derived straightforwardly from a mathematical definition of the logic of L. The
formalizations of S and T in L may be large (depending on the complexity of S
and T), but they can be inspected better than code can; in addition, expected
formal properties about them can be proved (this may include testing, especially
if the formalizations are executable or can at least be refined to executable
versions). Similar remarks apply to the formal expression of the relationship
between S and T artifacts. The encoders are also small and simple.

Of course, TR may generate a proof P that fails to pass the proof checker.
Such a failure would typically uncover some bug in TR. However, if a proof P
is valid and proves the formula derived from the artifacts SA and TA via the
encoders, then we know that TA is a correct translation of SA, no matter how
many bugs TR may have.

4 The Generator of Certified Java Card Applets

The source language S is SmartSlang (= smart card specification language), a
domain-specific language tailored to smart card applets. SmartSlang features
high-level constructs to express smart card concepts (ranging from communica-
tion with card readers to personal identification numbers) in a concise and con-
venient way. It also features an expressive type system (which includes, for exam-
ple, integer ranges and enumerations with optional argument), built-in crypto-
graphic operations, global invariants, and Java-like expressions and statements.
Users find the domain-specific language simple and easy to use.

The target language T is Java Card, a version of Java tailored to smart
cards. Java Card features a subset of the Java language (e.g. floating point
numbers and dynamic class loading are left out), a different set of library APIs
than standard Java (e.g. to handle communication with the card reader and to



perform cryptographic operations), and a specialized runtime environment with
its own security model. Even though Java is relatively high-level, developing
Java Card applets requires the programmer to deal with fairly low-level details,
greatly increasing the potential for bugs.

The translator TR is AutoSmart (= automatic generator of smart Card ap-
plets), which consists of two components that operate one after the other. The
first component checks various consistency properties of the SmartSlang specifi-
cation, such as type safety. For instance, expressions assigned to state variables
with integer range types are statically checked to always yield results within the
ranges. A linear arithmetic decision procedure and a propositional reasoner are
used to check type safety. The second component of AutoSmart generates Java
Card code from the checked specification. Some of the results of type checking
are used by the code generator: for example, the integer range types inferred for
intermediate arithmetic results are used to decide which Java Card types to use
to represent those values.

Translating SmartSlang into Java Card is not trivial. While some SmartSlang
constructs almost directly correspond to Java Card constructs (intentionally),
others are realized by multiple constructs spread through the Java Card code. For
example, Java Card allocates objects from the heap but does not support garbage
collection. Since memory is a very scarce resource in smart cards, Java Card
programs must not willy-nilly allocate new objects during normal computation:
all objects must be allocated during applet installation, and suitably re-used
during normal computation. On the other hand, SmartSlang has no notion of
objects and allocation, it just deals with values. Since some of these values are
represented as objects in the Java Card code, AutoSmart must figure out, for
the generated Java Card code, which objects to allocate and how to re-use them.

In the example applets we have worked on so far, the expansion ratio of
SmartSlang into Java Card, measured in lines, is about 3-5; we expect it to
rise to about 7 with the introduction into SmartSlang of additional high-level
constructs that we have planned. The generated code is quite readable and not
artificially verbose, rather close to what a human developer would write. The
key to generating good-quality code is domain-specificity: despite the differences
between SmartSlang and Java Card (e.g. explicitly allocated objects vs. just val-
ues), the two languages are relatively close to each other (after all, that they
both describe smart card applets). In addition, smart card applets are relatively
small (typically, only a few hundred lines), making their analysis and manipula-
tion tractable.

The logical language L is Metaslang, the specification language of SpecwareTM

[www.specware.org], a system for the rigorous development of software from for-
mal specifications via provably correct refinement to code. Metaslang is based on
higher-order logic; its features include predicate subtypes (as in PVS), first-order
polymorphism (as in HOL), pattern matching (as in ML), and quotient types.
Like the languages of popular higher-order theorem provers, Metaslang can be
conveniently used to formalize the semantics of other languages. The logic of
Metaslang has been formally defined and a proof checker for Metaslang exists.



In order to express the desired correspondence between SmartSlang specifi-
cations and Java Card programs, we must understand which features of those
artifacts are relevant at the top level. The interaction between a smart card and
a card reader is a master-slave one, where the reader is the master and the card
is the slave. Accordingly, a smart card applet is a passive entity that maintains
an internal state. When the applet receives a command (coming from the reader
through the runtime environment of the card), it processes the command, pos-
sibly updating its internal state, and produces a response (sent to the reader
through the runtime environment). Thus, the semantics of a smart card applet
can be expressed, in essence, as a function that maps a state and a command to
a new state and a response (i.e. a state machine).

A SmartSlang specification precisely describes the state of the applet, the
commands it recognizes, and how each command is processed (command process-
ing is expressed partly operationally, partly declaratively). We have developed a
formalization of the SmartSlang language in Metaslang. We have formalized the
abstract syntax and associated a formal semantics to the syntax. The top-level
semantics of a SmartSlang specification is a state machine of the form described
above.

A Java Card program consists of a set of classes. Each program must include
methods that constitute the interface with the Java Card runtime environment.
When the card reader sends a command, the runtime environment invokes a cer-
tain method, supplying the content of the command as argument. The method
can perform arbitrary processing, including updating the state of the objects
in the heap, using the library APIs, and constructing a response. When it ter-
minates, a response is sent to the reader. We have developed a formalization
of the Java Card language and APIs in Metaslang. The formalization currently
covers the constructs and APIs targeted by the AutoSmart code generator. The
top-level semantics of a Java Card program is also a state machine: the objects
in the heap constitute the state, and the transition determined by a command
is the net effect of the method invocation with that command.

The desired relationship between a SmartSlang specification and the corre-
sponding Java Card program generated by AutoSmart is that they exhibit the
same observable behavior. The internal state is not observable; the command-
response exchanges are observable. So, in our formalizations of SmartSlang and
Java Card, we associate the respective state machines with the set of all their
possible command-response exchange traces in time (since we are not interested
in real-time properties, traces are simply sequences conveying the relative time
ordering of the exchanges). The formula that expresses the correctness of a par-
ticular Java Card program with respect to a particular SmartSlang specification
says that the two artifacts have the same set of traces.

As of August 2005, AutoSmart does not yet generate proofs, but we are
actively working on that. The code generation component of AutoSmart consists
of various sequential phases. To reduce the complexity of proof generation, we
are generating a proof from each phase, and obtain the end-to-end proof by
composing the sub-proofs.



Once the proof generation capability is completed, we will be in a position to
check the correctness of the translations performed by AutoSmart using the proof
checker and the encoders. The encoders simply map the SmartSlang spec and
the Java Card program to their abstract syntax representations in Metaslang,
in order to construct the formula stating correctness (i.e. that the sets of traces
associated to the two artifacts are equal). The proof checker is used to check the
proof, yielding a formula that is the conclusion of the proof (if successful). A
simple syntactic check finally ensures that the conclusion of the proof coincides
with the correctness formula.

The capability to establish the correctness of smart card applet implemen-
tations with respect to the specifications without having to trust the generator
is particularly valuable for achieving third-party certification. Information tech-
nology security standards such as the Common Criteria and FIPS 140-2 (for
cryptographic modules) require the developer to provide, for the highest levels
of certification, proofs of correctness of the code with respect to requirements.

5 Why a Constructive Approach?

In many software situations we must deal with assurance of legacy code, which is
verified by a post-hoc method of proving certain properties, or possibly functional
correctness. But the combinatorial difficulty of a post-hoc approach has generally
prevented the community from being able to prove full functional correctness,
i.e. that the program actually does what is intended. For example, we may know
with high assurance that some glue code between programs does not overflow
a buffer, but not have a proof that it correctly glues components so that the
ensemble is correct.

But often we need not be relegated to just analyzing legacy code, and instead
are allowed to develop new software. Here the approach of applying constructive
design knowledge offers advantages. Most significantly, the intrinsic problem
complexity is reduced so that we can prove full functional correctness. This
complexity reduction is a consequence of a synthetic versus an analytic approach.
That is, the number of ways one functional specification can be implemented is
large. On the other hand, while most of these implementations are redundant
or differ in unimportant ways, an analytic approach must be able to capture
any implementation given. But a generator need only generate a reasonable
and smaller number of implementations. Then evolution and maintenance are
carried out on the source specification, avoiding the need for target code analysis.
Further understanding this question of verification-complexity reduction is a
suggested research topic. Empirically, we typically find a factor of about 3-5
increase in complexity or size moving from spec to code.

6 Conclusion

We have described a constructive approach to correctness, in which a generator
generates checkable proofs from the transformations that it performs. We have



exemplified the approach with the description of a generator of smart card ap-
plets. A key feature of the approach is that the generator need not be trusted. We
need only trust the proof checker as well as the axiomatization of the semantics
of the source and target language and of the correctness relationship between
them, which appears to be a “minimal” set of artifacts to be trusted in order to
formally establish correctness. We have also discussed potential advantages of a
constructive approach over post-hoc verification, for the case where we have the
opportunity to develop new code as opposed to using legacy code.


