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1 Introduction

Verifying properties of large real-world programs requires vast quantities of in-
formation on aspects such as procedural contexts, loop invariants or pointer
aliasing. It is unimaginable to have all these properties provided to a verifica-
tion tool by annotations from the user. Static analysis will clearly play a key
role in the design of future verification engines by automatically discovering the
bulk of this information. The program properties that can be computed by a
static analyzer fall in two main categories: numerical properties, like the range
of scalar variables, and symbolic properties, like pointer aliasing. There is a
striking dichotomy between numerical and symbolic static analysis techniques
in terms of both precision and efficiency. On one hand, the analysis of numerical
properties of programs has been intensively investigated and a broad spectrum
of abstractions has been developed based upon results from linear algebra [17],
arithmetic [15], linear programming [7] or graph theory [22]. These algorithms
can discover complex program invariants, however their scalability is severely
limited. Techniques that partition the variables of the program in small-size
packets that are tractable by these algorithms have been recently applied to
the verification of large safety-critical software with success [2, 33]. On the other
hand, research on symbolic static analysis has mainly focused on achieving scala-
bility through its most prominent application: pointer analysis. A decade long of
efforts have raised pointer analysis to the point where million line programs can
be analyzed in reasonable time [25, 8, 12, 26, 16, 34, 35]. However, there has been
little gain in expressiveness compared to Andersen’s original pointer analysis [1],
and adding precision causes tremendous scalability issues. For instance, there is
no known flow-sensitive pointer analysis that can handle large programs.

We believe that the integration of numerical and symbolic static analysis
is one of the key challenges lying ahead for achieving the verification of large-
scale programs. Existing automatic verifiers able to analyze large programs make
simplifying assumptions which limit the degree of interactions between symbolic
and numerical properties. In the case of ASTRÉE [2, 6], the programs consid-
ered manipulate simple data structures and pointer aliasing is trivial. C Global
Surveyor [33, 3] can discover array-sensitive pointer aliasing relationships, but



the value of scalar fields inside aggregate structures is abstracted away. Verify-
ing more general classes of programs requires analyzing a broad variety of data
structures including arrays, lists, trees, message queues, sockets, whose shape
and contents may be strongly correlated to the value of scalar variables. For
example, consider a function that takes a slice of an array of floating-point num-
bers and stores it in a list. The static analysis should be able to infer that each
element of the list is equal to the corresponding one in the array, thus relating
the position of an element in the list with the position of the corresponding
one in the array. Although there is probably no general-purpose solution to that
problem, there is a need to design a general algebraic framework that allows us
to systematically construct integrated symbolic and numerical static analyses.
The body of research on shape analysis [23] and three-valued logic [18] provides
a general framework that has been primarily developed for verifying nontrivial
properties of dynamic data structures [24], and which has been endowed more
recently with numerical abstractions [14, 13]. However, the graph-based abstrac-
tion of memory cannot distinguish between elements of chained or aggregate
data structures, and despite efforts for optimizing the computations [20], the
algorithms do not scale beyond a few thousand lines of code.

Bridging the gap between symbolic and numerical static analysis without
sacrificing scalability seems an inextricable problem. We propose an approach
that radically departs from standard static analysis design methodologies and
which can be summarized as follows: “use known scalable symbolic analysis algo-
rithms and recast any additional required symbolic information into a numerical
property”. The benefits of this approach are twofold: first, we can use the large
number of existing numerical abstractions to encode a broad spectrum of sym-
bolic properties; second, correlating symbolic properties of the program with
numerical ones becomes straightforward, since both are expressed in the same
setting. Most of our research work consisted of applying this approach to the
analysis of real-world programs, and Section 2 gives an overview of the results
obtained in this domain. At first glance, the various static analyses developed un-
der this approach [9, 10, 27, 29, 31–33] bear little resemblance one with another,
apart from the fact they embed an abstract numerical lattice within a symbolic
structure. In Sect. 3 we show that the core mechanism of all these static analy-
ses can be expressed as an instance of a general algebraic structure, that we
call abstract fiber bundle in reason of its intriguing connection with Algebraic
Topology. In Sect. 4 we discuss the relevance of this approach for the design of
large-scale verification systems.

2 Mixed Symbolic and Numerical Static Analysis

The first occurrence in the literature of a static analysis that mixes symbolic and
numerical approximations is an alias analysis for strongly typed languages [9,
10] that is able to discover properties such as “two lists of arbitray length share
their elements pairwise”. In that model, pointer aliasing is represented by an
equivalence relation over access paths into data structures. The abstraction is



based on a finite partitioning of the set of access paths by monomial unitary-
prefix path expressions, which are given by the Eilenberg decomposition of a
rational language [11]. Monomial unitary-prefix path expressions have the form
π1B

∗
1π2B

∗
2 . . . πnB∗

nπn+1 where the πi are sequences of data selectors and the
Bi are rational languages, called the bases of the decomposition. The key idea
consists of assigning a counter variable to each base and use standard numerical
lattices to set constraints between these counters. For example, two lists x and
y that share their elements pairwise can be described as follows:

x.(tl)i.hd ≡ y.(tl)j .hd ⇐⇒ i = j

by using the numerical lattice of affine equalities [17]. The pointer aliasing re-
lation is thus completely abstracted by a finite number of numerical relations.
We have designed an abstraction of relations over free monoids inspired by this
model that did not require any type annotation and did not incur the possible
exponential cost of the Eilenberg decomposition [27]. The main idea was to use a
regular automaton as the base symbolic structure and assign a numerical counter
to each transition of the automaton. The automaton describes the access paths
within data structures and is constructed jointly with the aliasing relation. Since
the aliasing relation is based on this structure, changing the automaton requires
to modify the representation of the aliasing relation accordingly. This opera-
tion was carried out by endowing the abstract domain with the structure of a
cofibered domain [27]. This allowed us to construct a pointer analysis of similar
power for dynamically typed languages like Java [30], as well as a communica-
tion analysis for systems of concurrent processes based on the π-calculus [28].
However, this numerical model has two important drawbacks: the operations on
aliasing relations are costly and arrays cannot be represented precisely.

In order to lift these limitations we built a new numerical model based on
a different interpretation of the semantics of memory allocation. Each object
allocated in memory is assigned a timestamp, which is a numerical abstraction
of the execution trace that led to the object creation. The memory is repre-
sented by a graph whose vertices are labels of allocation statements together
with a timestamp, and whose edges represent the points-to relation. Arrays can
naturally be integrated into this scheme by simply adding a numerical index to
edges. This new model allowed us to build a flow-sensitive pointer analysis for
Java-like languages [31] and a considerably simpler communication analysis for
the π-calculus [29]. It also allowed us to tackle the analysis of multithreaded pro-
grams. Flow-sensitive analyses are impractical in the presence of threads due to
the combinatorial blowup of interleaving. We have developed a pointer analysis
for the C language that lies between flow-sensitive and flow-insensitive analy-
ses [32]. An inexpensive flow-sensitive analysis is first run on each function in
order to build flow-insensitive points-to equations that incorporate all local loop
invariants. Then, these equations are solved using a constraint resolution algo-
rithm. This analysis can be seen as an homeomorphic extension of Andersen’s
analysis scheme [1] in which inclusion constraints are annotated by numerical
invariants. The constraint resolution algorithm is similar to Andersen’s except



that numerical operations are performed at each elementary step. The analysis
scales well and has been successfully applied to the control software of a science
payload for the International Space Station [32].

These encouraging results motivated us to apply these techniques to the large
mission-critical programs developed at NASA for the Mars Exploration Program.
We have developed a static array-bound checker for NASA flight software, called
C Global Surveyor, which is based on a numerical abstraction of the heap [33].
The focus of this tool was not so much on memory allocation, which is scarcely
used in mission-critical software, but on pointer arithmetic. In the family of
programs considered, data are organized in large structures and manipulated by
transmitting their address to generic functions. We designed a model in which
all data are referenced using a byte-based offset within the memory block where
they belong. The abstract heap is a points-to graph labeled with numerical
intervals representing offset ranges. This graph is iteratively refined by narrowing
intervals and pruning edges. The process is bootstrapped by using the memory
graph produced by Steensgaard’s analysis [25], and subsequent phases essentially
consist of arithmetic manipulations on the labels of the graph. We have applied
this static checker to codes ranging from 140 KLOC to 550 KLOC (the flight
software of the current mission Mars Exploration Rovers). On average, 80% of all
array accesses could be decided by the verifier, with the analysis speed peaking
at 100 KLOC/hour [3]. The only limiting factor was the enormous amount of
artifacts produced by the analyzer, which forced us to use an external storage
management that degraded the performances.

3 Abstract Fiber Bundles

At first glance, the static analyses described in the previous section may look like
a disparate collection of ad hoc algorithms complex to design and implement. If it
were so, there would be no point in promoting a general approach to integrating
numerical and symbolic static analyses. In this section, we would like to show
that the core structure of all static analyses above mentioned [10, 30, 29, 31–33]
are instances of a generic algebraic structure that precisely defines the interaction
between the symbolic and numerical aspects of the analysis, and also provides a
systematic decomposition of the complex semantic operations involved, making
the implementation modular.

We use Abstract Interpretation [4, 5] to define our analysis framework. Our
concrete semantic domain is given by a powerset lattice D = (℘(D),⊆, ∅,∪,
D,∩). In each case we give a simplified construction of D, without loss of gen-
erality though, in order to emphasize the common structure of these analyses.
In all static analyses considered, D is a set of tuples mixing symbolic values
and integers. For storeless alias analyses [10, 30] and the communication analy-
sis of the π-calculus of [28], the aliasing/communication structure is given by an
equivalence relation. The analysis of [29] represents the communication struc-
ture by a binary relation which is not an equivalence relation. In all those cases,
D is the set of all binary relations on strings, which denote either access paths



into data structures or sequences of process interactions. In the alias analysis
of [31], the main structure is a points-to relation between ojects, which may be
structured records or arrays. These objects are identified by timestamps, which
are sequences of tuples of integers. In that case, D contains all triples 〈t1, f, t2〉,
where t1, t2 are timestamps and f is either a field selector or an integer (in
the case of a points-to relation involving an array). The representation of the
points-to graph in C Global Surveyor [33] is given by a set of tuples 〈v1, i1, v2, i2〉
where v1, v2 are program variables and i1, i2 are offsets expressed in bytes and
denoting positions within v1, v2. Although it is described differently in the paper,
the pointer analysis of [32] is based on an abstraction of inclusion constraints
enriched with integer values, which denote timestamps and array indices, like
in Xi ⊇ ∗(Yj + o), where i, j, o are integers. An enriched inclusion constraint of
that form can be encoded as a tuple of symbolic variables and integers.

The first step of the abstraction consists of projecting D onto a set B, that
we call the base, and which contains only symbolic elements. We denote by
π : D → B the projection. In the case of the analyses of [9, 10], B is the set of
all pairs 〈Π1,Π2〉, where Π1,Π2 are monomial unitary-prefix path expressions
from the Eilenberg decomposition of the language denoting all possible access
paths. We will use this instantiation of the framework as our running example.
Now, we assign a set Vb of integer-valued variables to each b ∈ B together with
a family of mappings φb : π−1(b) → INVb , that we call local trivializations. The
variables of Vb represent the numerical information associated to a symbolic ele-
ment of the structure. In our example, V〈Π1,Π2〉 contains the counters associated
to each base of the Eilenberg decomposition appearing in Π1 or Π2. The local
trivialization φ〈Π1,Π2〉 maps a pair 〈π1, π2〉 of access paths to the tuple of in-
tegers denoting the number of times each base of Π1 and Π2 is traversed by
π1 and π2. Finally, we associate an abstract numerical lattice F(b) with each
b ∈ B, that we call the fiber over b. This abstract numerical lattice provides a
computable numerical abstraction of sets of integer valuations over the variables
Vb through a concretization function γb : F(b) → ℘(INVb). We call the structure
(D,B, φ,F) an abstract fiber bundle. A section of the fiber bundle is a family
(νb)b∈B of abstract numerical relations, where νb ∈ F(b) for each b in B. The
collection of all sections endowed with the pointwise extension of the abstract
numerical lattice operations forms a lattice S. This defines an approximation
γ : S → D of the concrete domain as follows:

γ((νb)b∈B) = {x ∈ D | φπ(x)(x) ∈ γπ(x)(νπ(x))}

In our example, the lattice of sections obtained is isomorphic to the lattice of
monomial unitary-prefix relations of [9, 10].

Now, if B is the set of pairs 〈q1, q2〉 of final states of a deterministic regular
automaton A, π maps a pair of access paths in the language recognized by A to
the pair of accepting final states, and φ〈q1,q2〉 maps a pair of access paths to the
tuple of integers denoting the number of times each transition of the automaton
is traversed by the access paths, then we obtain the abstract domain of [30, 28,
29]. We leave to the reader the task of showing that the abstract domains of the



remaining static analyses [31, 33, 32] can be constructed along the same lines. The
main idea is that the base contains all symbolic information, whereas the fibers
carry all numerical information. Although they bear a similar name, the abstract
cofibered domains of [27] are orthogonal to this construction. Their main purpose
is to formalize the notion of an adaptive lattice, where the abstract domain
changes during the execution of the static analysis, and to provide a systematic
way of constructing widening operators. For example, cofibered domains can be
used on top of an abstrat fiber bundle when the base B of the bundle is computed
during the analysis, as it is the case in [30, 28]. They do not give any insight into
the internal structure of the domain itself, which is the purpose served by the
abstract fiber bundle.

The main difficulty in the design of a mixed symbolic and numerical static
analysis is the construction of the semantic transformers. The semantic defini-
tions are clogged with intricate manipulations on the variable sets Vb and the
abstract numerical relations. We will now show that all these semantic transfor-
mations can be carried out in a common algebraic framework using a reduced set
of basic operations. We first need a few definitions. Any numerical approximation
defined in the literature [17, 7, 15, 21, 22] associates to any set of variables V an
abstract numerical lattice N (V ) over V . Given a one-to-one mapping ι : U → V
between sets of variables, each numerical approximation comes equipped with
two functions: a projection function N ι : N (V ) → N (U), which eliminates the
variables which are not in the image of ι from an abstract numerical relation and
renames the others, and an extension function N ι : N (U) → N (V ), which lifts
an abstract numerical relation defined over U onto V and renames the variables
accordingly. It is not difficult to see that for every abstract numerical lattice, the
pair (N ι,N ι) forms a Galois connection. A numerical approximation N can be
endowed with the structure of a contravariant functor from the category of finite
sets and one-to-one mappings to the category of lattices and Galois connections.

Now let N be a numerical approximation. We assume that we have a lan-
guage of constraints C that can be reflected in N , that is, if S is a system of
constraints of C over the variables V , there is an element [[S]] of N (V ) that over-
approximates the set of solutions of S in INV . In practice, the language of affine
equality constraints is sufficient and it can be exactly reflected in most relational
numerical approximations. We call local section a finite family (Ui, νi)i∈I where,
for all i in I, Ui is a finite set of variables and νi ∈ N (Ui), together with a
family (Si,j)(i,j)∈I×I of systems of constraints of C, where Si,j is defined over
the variables of the disjoint union Ui⊕Uj . We call the family (Ui, νi)i∈I alone a
local covering. Moreover, a local section must satisfy the compatibility condition,
which is defined as follows. If (i, j) ∈ I × I, we denote by ιi : Ui → Ui ⊕ Uj and
ιj : Uj → Ui⊕Uj the canonical inclusion mappings. The compatibility condition
says that:

∀(i, j) ∈ I × I : N ιi(νi) uN ιj(νj) v [[Si,j ]]

In practice, most Si,j are empty, that is [[Si,j ]] = >. Now, given a local cover-
ing (Ui, νi)i∈I that does not satisfy the compatibility condition with respect to
a family of constraints (Si,j)(i,j)∈I×I , we are interested in finding the greatest



local covering (Ui, µi)i∈I for the pointwise extension of the abstract numeri-
cal lattice ordering, that satisfies the compatibility condition and that refines
(Ui, µi)i∈I , i.e. ∀i ∈ I : µi v νi. All semantic operations of the static analyses
under consideration can be stated as instances of this problem. For example,
the alias analysis of [30] requires to perform the transitive closure of an abstract
aliasing relation. Recall that the base of the fiber bundle is given by pairs 〈q, q′〉
of final states of a regular automaton. Each transition of the automaton is as-
signed a numerical counter and the numerical approximation expresses relations
between the values of these counters within an alias pair. The basic step of the
transitive closure consists of taking two elements ν〈q1,q2〉 and ν〈q2,q3〉 of a section
and compute a new element µ〈q1,q3〉 which consists of equating the transition
counters associated to the component q2 in the first two alias pairs, and then
project the numerical relation onto V〈q1,q3〉, renaming the counters accordingly.
This actually amounts to finding the greatest local section refining the local cov-
ering

(
(V〈q1,q2〉, µ〈q1,q2〉), (V〈q2,q3〉, µ〈q2,q3〉), (V〈q1,q3〉,>)

)
satisfying the compati-

bility condition under the systems of constraints (Si)1≤i≤3, that express the
equality of transition counters between two alias pairs having the state qi in
common.

The greatest refinement of a local covering (Ui, νi)i∈I satisfying the con-
straints (Si,j)(i,j)∈I×I always exists and can be constructed as follows. For all
i, j in I, we denote by εi : Ui →

⊕
i∈I Ui and σi,j : Ui ⊕ Uj →

⊕
i∈I Ui the

canonical inclusion mappings. We define

χ =
(i,j)∈I×I

Nσi,j([[Si,j ]])

as the conjunction of all compatibility constraints. We define the gluing function
G :

∏
i∈I N (Ui) → N (

⊕
i∈I Ui) as follows:

G((νi)i∈I) =
(

i∈I
N εi(νi)

)
u χ

We define the projection function P : N (
⊕

i∈I Ui) →
∏

i∈I N (Ui) as

P (µ) = (N εi(µ))i∈I

Let ↓ χ = {µ | µ v χ} be the ideal generated by χ, and P |↓χ the restriction
of P to ↓ χ. We can show using the properties of the functor N , that the
pair (P |↓χ, G) defines a Galois connection, and that for every local covering
C = (Ui, νi)i∈I , the greatest local covering refining C is given by P ◦G ((νi)i∈I).
We call the triple (N , P, G) the structure sheaf of the abstract fiber bundle.
This means that all semantic transformations can be carried out using only the
structure sheaf, the language of constraints C and the lattice operations.

The reader must have noticed that we have borrowed the names of the struc-
tures we have introduced to unify the different models of mixed symbolic and
numerical static analyses from Algebraic Topology. The analogy between our
model and standard topological constructs is extremely intriguing. The curious
reader can check that there is a one-to-one correspondence between each point



in the definition of a sheaf and a fiber bundle that we gave and the standard
ones [19]. The main difference is that Abstract Interpretation deals with approx-
imation, hence we do not have “exact” constructs as in the topological case. We
get lattices instead of groups and Galois connections instead of isomorphisms.
We believe that there is more than an analogy here, and that techniques from
Algebraic Topology could be used with profit for designing novel abstract inter-
pretation frameworks.

4 Applications to Software Verification

There are two major hurdles when it comes to designing a software verification
system based on static analysis. The first one lies in the difficulty of keeping a
precise hence complex abstract interpretation framework flexible. Specializing a
static analyzer for a family of programs or enriching the abstract domains in
order to analyze certain classes of algorithms more precisely are not tasks that
can be done once and for all at design time. They require to conduct a lot of
experiments on real applications [2, 33]. Therefore, the architecture of the static
analyzer must be as modular as possible in order to support this activity. We
think that the model we propose is well adapted to incremental refinement. Since
all the complexity of the analysis has been shifted into the numerical model,
increasing the precision essentially means changing the structure sheaf of the
abstract fiber bundle, which is completely transparent as long as the semantic
transformers are expressed using sheaf operations.

The second difficulty that arises when using a static analyzer for verification
is the interpretation of the results. Whenever the analyzer either detects an
error or is unable to conclude, elements of information must be provided to the
user. The properties calculated by the static analyzer can be cryptic and very
large to print out, especially for complex abstract domains. We think that our
model provides a way of taming this problem by using a symbolic abstraction
that can be traced back to the program easily. Inclusion-based pointer analysis
is a good example [1] of an analysis whose results can be directly manipulated
by the user [16]. Recovering readable program properties from the numerical
information is an area that remains to be explored.
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