
Position Paper: Model-Based Testing

Mark Utting
The University of Waikato, New Zealand

Email: marku@cs.waikato.ac.nz

1 Introduction

This position paper gives an overview of model-based testing and discusses how
it might fit into the proposed grand challenge for a program verifier.

Model-based testing [EFW02, BBN04, LPU04] is a break-through innovation in
software testing because it completely automates the validation testing process.
Model-based testing tools automatically generate test cases from a model of
the software product. The generated tests are executable and include an oracle
component which assigns a pass/fail verdict to each test.

Model-based testing helps to ensure a repeatable and scientific basis for product
testing, gives good coverage of all the behaviors of the product and allows tests
to be linked directly to requirements. Intensive research on model-based testing
in the last 5-10 years has demonstrated the feasibility of this approach, shown
that it can be cost-effective, and has developed a variety of test generation
strategies and model coverage criteria. Some commercial tools have started
to emerge, from the USA (T-Vec, Reactive Systems, I-logix), and also from
Europe (Conformiq, Leirios Technologies, Telelogic), as well as a wide variety
of academic and research tools [BFS05].

The discussion in this paper is limited to functional testing, rather than the more
specialist areas of testing real-time software or concurrent software, because
model-based testing is less mature in these areas.

The paper gives an overview of the variety of methods and practices of model-
based testing, then speculates on how model-based testing might promote or
complement the program verifier grand challenge.

2 Overview of Model-Based Testing

Model-based testing is the automation of black-box test design. It usually in-
volves four stages:

1



1. building an abstract model of the system under test. This is
similar to the process of formally specifying the system, but the kind of
specification/model needed for test generation may be a little different to
that needed for other purposes, such as proving correctness, or clarifying
requirements.

2. validating the model (typically via animation). This is done to
detect gross errors in the model. This validation process is incomplete of
course, but this is less crucial in this context, than in the usual refinement-
to-code context. With model-based testing, if some errors remain in the
model, they are very likely to be detected when the generated tests are
run against the system under test (see below).

3. generating abstract tests from the model. This step is usually auto-
matic, but the test engineer can control various parameters to determine
which parts of the system are tested, how many tests are generated, which
model coverage criteria are used etc.

4. refining those abstract tests into concrete executable tests. This
is a classic refinement step, which adds concrete details missing from the
abstract model. It is usually performed automatically, after the test en-
gineer specifies a refinement function from the abstract values to some
concrete values, and a concrete code template for each abstract operation.

After this, the concrete tests can be executed on the system under test, in order
to detect failures (where the outputs of the system under test are different to
those predicted by the tests).

It is the redundancy between the test model and the implementation that is
important. Experience shows that failures that occur when the tests are run
are roughly equally likely to be due to errors in the model or errors in the
implementation.

So the process of model-based testing provides useful feedback and error detec-
tion for the requirements and the model, as well as the system under test.

The remainder of this section gives a brief overview of the variety of model-based
testing practices, under five headings.

Nature of the Model: The model used for test generation can be a functional
model of just the system under test, or of the environment of the system
(capturing the ways in which the system will be used), or (more usually) a
model of both the system and its environment. Models of the system are
useful for predicting the outputs of the system, which allows test oracles
to be generated, while models of the expected environment are useful for
focussing the test generation on an expected usage of the system.

Model Notation: Almost all formal specification notations can and have been
used as the basis for model-based testing. Pre/post notations such as Z,

2



B, JML and Spec# are widely used for model-based testing, but so are
transition-based notations such as Statecharts and UML state machines.

Control of Test Generation: It is necessary to be able to control the gener-
ation of tests, to determine how many tests are generated and which areas
or behaviours of the system they test.

One approach for controlling the generation is to specify (in addition to
the model) some patterns or test specifications, and then generate only
tests that satisfy these patterns or specifications.

Another approach is to specify a model coverage criteria which determines
which tests are interesting. Most of the usual code-based coverage criteria
(such as statement coverage, decision/condition coverage, MC/DC, full
predicate coverage, def-use coverage) have been adapted to work as model
coverage criteria.

On-line or Off-line Test Generation: On-line model-based testing generates
tests from the model in parallel with executing them. This makes it easy to
handle non-determinism in the system under test, since the test generator
can see the outputs from the system under test (after its non-deterministic
choice) and change the subsequent test generation accordingly.

On the other hand, off-line test generation generates tests independently
of executing those tests. This has numerous practical advantages, such
as being able to execute the generated tests repeatedly (for regression
testing), in different environments etc.

Requirements Traceability: It is highly desirable for model-based testing
tools to produce a requirements traceability matrix, which relates each
informal requirement to the corresponding tests. This kind of traceability
helps with validation of the informal requirements, and can also be used
as a coverage criteria (every requirement is tested).

Requirements traceability can be obtained by annotating the model with
requirements identifiers, then preserving those annotations throughout the
test generation process, in order to produce a relation between require-
ments and test cases.

3 Similarities and Differences

This section discusses several similarities and several differences between using
model-based testing to find errors in a program versus using a program verifier.

3



3.1 Similiarities

3.1.1 Redundant Specification

To verify the behavioural correctness of a program, we must have a specifica-
tion of the expected behaviour of the program. Similarly, model-based testing
requires a specification (model) of the expected behaviour. In both cases, we
have two descriptions of the program behaviour: one is the specification and
the other is the executable code.

It is important that these two descriptions should be as independent as pos-
sible, since the goal of model-based testing, and of program verification, is to
find discrepancies between the two descriptions (or prove that there are no dis-
crepancies). That is, there must be a large degree of redundancy between the
specification/model and the implementation code. For example, it is usually
pointless to derive a specification from the code, then use that specification as
the basis for verifying or testing the code—one would expect to find no errors,
because there is no redundancy between the two descriptions of behaviour—
they are consistent by construction. (The only reason for performing such an
exercise would be to try and find errors in the testing/proof tools themselves).

This shows that both model-based testing and program verification have a com-
mon overhead of writing the specification. The requirement for redundancy
implies that the specification and the code must both be the result of some
human creativity, since if one was derived automatically from the other there
would be no redundancy.

3.1.2 Abstract Specification

We have seen that model-based testing and program verification both require
a specification of the expected behaviour of the system. Another similarity be-
tween the two approaches is that this specification needs to be abstract. That is,
we want the specification to be shorter and simpler than the program itself, typ-
ically by omitting many of the details of the program. Otherwise, programmers
would not be willing to write such lengthy specifications, the cost of writing
them and validating them would be prohibitive, and it would be difficult to
have confidence in the correctness of the specification. So abstraction is the key
to developing practical specifications, and is a key goal of both model-based
testing and program verification.

3.1.3 Reasoning Technology

The goal of most model-based testing tools is to fully automate the test gen-
eration process. This requires sophisticated reasoning about specifications and
sequences of operations. The reasoning technologies that have been used in

4



model-based testing include: model-checking, symbolic execution, constraint-
based simulation, automated theorem proving, and even interactive theorem
proving.

These are the same kinds of reasoning technologies that are needed and used
within program verifiers. Indeed, the needs of the two approaches are almost
identical. One difference is that, because model-based testing does not try to
test all behaviours, it is often acceptable to restrict data types to be small and
finite, to make reasoning decidable and fast. However, if the focus of a program
verifier is on finding errors (like ESC/Java2 1), and completeness is not an
essential goal, then the same technique can be used.

3.2 Differences

3.2.1 Colour

Model-based testing is a black-box approach, which can be applied to binary
programs without source code, to embedded software, or even to hardware de-
vices. In contrast, program verification is a white-box approach, which requires
the source code of the program to be verified, and also requires a formal seman-
tics of that source code. This means that program verification is more restricted
in the kinds of systems that it can verify, than model-based testing.

3.2.2 Partiality

Model-based testing is quite often used to test just one aspect of a complex
system. This means that the specification can specify just that aspect, rather
than having to specify the complete system behaviour. For example, in a GPS
navigation system for a car, we might use model-based testing to test the track-
ing of the vehicle’s position, and ignore all route planning, route display and
user interaction features. A separate model-based testing project might test the
route planning algorithms, while ignoring the other features such as position
tracking. Such an approach tests each aspect independently, but does not ex-
plore any interactions between the aspects (for example, between route planning
and position tracking).

The ability to perform model-based testing from a partial specification means
that each partial specification can be more smaller and more abstract than one
comprehensive specification would be, which makes it easier to get the spec-
ification right and simplifies the test generation task. Furthermore, it seems
likely that fewer specifications will be needed for model-based testing than for
verification of a program, since a verifier usually requires specifications of all
modules within the system, whereas model-based testing requires just a specifi-
cation of the observable behaviour of the top-level system. One can argue that

1See http://secure.ucd.ie/products/opensource/ESCJava2.

5



it is good engineering discipline to require specifications of all modules! How-
ever, the point here is simply that the minimum level of specification needed for
model-based specification is likely to be less than that required for verification,
which may help to make model-based testing less costly than verification.

A partial specification may be specifying a subsystem of the system under test,
with multiple specifications specifying different subsystems, or it may be specify-
ing a very abstract view of the behaviour, with multiple specifications specifying
alternative abstractions of the same system. The former case (verifying subsys-
tems independently) is often used for program verification too, but the latter
case (verifying a system with respect to multiple specifications) seems to be
rarely used for program verification and may deserve further investigation. It is
related to program slicing, which has recently been suggested as an abstraction
technique for model-checking programs [VTA04].

3.2.3 Confidence

It is common wisdom that testing can never give a 100% guarantee that a
program is bug-free, whereas proof can. This is a fundamental and intrinsic
difference between testing and proof.

However, to play devil’s advocate, I shall misquote Dijkstra: “Program testing
can be used to show the presence of bugs, but [almost] never to show their
absence!” [Dij70]. I’ve added the ‘almost’ to comment that there are some
circumstances, like the following, where testing can ‘prove’ the absence of bugs.

• Some of the algorithms for generating tests from finite state machines [LY96]
can guarantee that if all tests pass, then the system under test has iden-
tical behaviour to the specification (the FSM), under the (rather strong!)
assumption that the implementation has a maximum number of distinct
states that is no greater than the number of states in the specification.

• HOL-Test [BW05] is an interactive model-based testing tool that gener-
ates tests from a model, but also generates ‘uniformity assumptions’ which
formalise the assumptions being made about the cases that are not tested
and their similarity to the tests. If one could prove these uniformity as-
sumptions, then passing all the tests would imply that the implementation
is a refinement of the specification.

• Some algorithms for testing concurrent processes can exhaustively test all
interleavings of the processes, which can guarantee that there are no bugs
due to concurrency interactions between the processes.

• Cleanroom [Mil93] uses rigorous development techniques (informal proof)
to obtain high quality software, and does not use testing as a bug-detection
technique. Instead, it uses testing to determine the statistical reliability
of the software, by performing random testing based on a profile of the

6



expected usage of the software. This does not guarantee that the software
is bug free, but does tell us its mean time between failures.

Of course, we expect that the proposed program verifier will guarantee abso-
lutely no bugs! Well, except for out-of-memory errors, integer overflow errors
etc., which are usually considered outside the scope of verification.

The point is that formal verification is relative to a semantics of the program-
ming language that is usually a simplification of the real semantics. Typically,
we ignore some difficult issues such as resource limits. In contrast, testing is the
only verification technique that executes the program in its real environment,
under conditions that are as close as possible to its intended use. So, as Fig. 1
suggests, verification is good at finding all errors down to a certain level of ab-
straction (usually the simplified language semantics, but the long term goal is
to push this abstraction level down as far as possible), whereas testing is good
at finding some errors at all levels of abstraction (down to and including the
hardware).

Testing

Verification

100%0%

Hardware

Assembler

Program Code

Specification

Abstraction Level

Errors Found

Figure 1: Strengths of Verification and Testing

For these reasons, it is likely that testing and proof will always be somewhat
complementary technologies, and the goal will be to find a suitable balance
between them.

4 Relationship to the Program Verifier Grand
Challenge

Once the grand challenge of a fully automatic program verifier has been achieved,
one might argue that there will no longer be any need for model-based testing,
or any kind of functional testing, because it will be easy and cheap to prove
programs correct, rather than test them. And proof is obviously preferably to

7



testing, since it gives guarantees about all behaviours being correct, rather than
just detecting some (unknown) proportion of the obvious errors.

However, in the interim, model-based testing obviously has a role to play. Even
when the grand challenge has been achieved, model-based testing may still be
useful. Its roles could include:

1. Using model-based testing as an introduction to the ideas of formal models
and verification. That is, model-based testing is a cost-effective approach
to finding errors in non-verified programs.

The adoption of model-based testing by industry will build experience
in formal modelling skills and the use of automated testing/verification
tools. These are necessary prerequisites for the use of a full program
verifier. Thus, model-based testing can be viewed as an evolutionary step
(the missing link!) from the status quo, towards fully automatic program
verification by proof.

Model-based testing changes the current software lifecycle in a small way
(it introduces formal modelling, and modifies the test development pro-
cesses, but leaves the rest of the lifecycle unchanged), whereas full verifi-
cation seems likely to require more significant methodological changes.

2. Validating the specification notations which will be used by the program
verifier. Similar notations are needed for model-based testing and for full
verification. So model-based testing may be a useful way to validate the
expressive power and usability of proposed specification notations.

3. Using model-based testing as a specification-validation tool. Experience
with model-based testing shows that the faults exposed by executing the
generated tests are often due to specification or requirements errors, rather
than implementation errors [BBN04]. So if we have a program and a
proposed specification for that program, model-based testing could be
used to detect errors in the specification, before starting verification.

4. Using model-based testing as an approximation of the program verifier.
That is, after an engineer has written a specification of the desired sys-
tem, and also written an implementation of that system (or done a large
refinement step towards an implementation), model-based testing could
be used to automatically find some of the errors in that implementa-
tion/refinement. This is similar usage as the previous role, but aimed
at finding errors in the implementation rather than the specification.

Model-based testing may give faster and more comprehensible detection
of errors than a proof approach. After all errors detected via model-based
testing have been corrected, then a proof approach could be started. This
is based on the oft-quoted observation that 90% of proofs fail because the
conjecture that is being proved is false.

8



5. Using model-based testing as an alternative to full verification. If we
assume that the program verifier requires a significant amount of input
to achieve good results (for example, very precise specifications of the
system and each module within the system), then the cost of full veri-
fication may not be cost-effective for some non-critical systems. In this
case, model-based testing may be a viable alternative, albeit with reduced
guarantees about the program correctness. Model-based testing is likely
to require fewer specifications than full verification (eg. only a top-level
system model, rather than a model of each module within the implementa-
tion, and a partial model is often sufficient to generate useful test suites).

References

[BBN04] M. Blackburn, R. Busser, and A. Nauman. Why model-based test au-
tomation is different and what you should know to get started. In Inter-
national Conference on Practical Software Quality and Testing, 2004. See
http://www.psqtconference.com/2004east/program.php.

[BFS05] A. Belinfante, L. Frantzen, and C. Schallhart. Tools for Test Case Genera-
tion. In M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner,
editors, Model-Based Testing of Reactive Systems [BJK+05], Springer
LNCS 3472, pages 391–438. Springer-Verlag, 2005.

[BJK+05] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, editors.
Model-Based Testing of Reactive Systems. Number 3472 in LNCS. Springer-
Verlag, 2005.

[BW05] A. Brucker and B. Wolff. Symbolic test case generation for primitive re-
cursive functions. In Jens Grabowski and Brian Nielsen, editors, Formal
Approaches to Testing of Software, number 3395 in LNCS, pages 16–32.
Springer-Verlag, Linz, 2005.

[Dij70] Edsger W. Dijkstra. On the reliability of mechanisms. In Notes On
Structured Programming. EWD249, 1970. See http://www.cs.utexas.edu/
users/EWD/ewd02xx/EWD249.PDF.

[EFW02] I.K. El-Far and J.A. Whittaker. Model-based software testing. In John J.
Marciniak, editor, Encyclopedia of Software Engineering, volume 1, pages
825–837. Wiley-InterScience, 2002.

[LPU04] B. Legeard, F. Peureux, and M. Utting. Controlling Test Case Explosion in
Test Generation from B Formal Models. The Journal of Software Testing,
Verification and Reliability, 14(2):81–103, 2004.

[LY96] D. Lee and M. Yannakakis. Principles and methods of testing finite state
machines — A survey. Proceedings of the IEEE, 84(2):1090–1126, 1996.

[Mil93] Harlan D. Mills. Zero defect software: Cleanroom engineering. Advances
in Computers, 36:1–41, 1993.

[VTA04] Vivekananda M. Vedula, Whitney J. Townsend, and Jacob A. Abraham.
Program slicing for atpg-based property checking. In 17th International
Conference on VLSI Design, Mumbai, India, January 5-9 2004, pages 591–
596. IEEE Computer Society Press, 2004.

9


