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1 Introduction

A program verifier determines whether a program satisfies a specification. Ide-
ally verification is achieved by static analysis without executing the code. How-
ever, program verification is unsolvable in general. The interactive approach,
for example with a human guiding a theorem prover, does not scale to current
software systems and libraries. Some restricted kinds of specifications can, how-
ever, be checked automatically, for example, type definitions. Also static analy-
sis of properties such as un-initialized variables, null-pointer de-referencing, and
array-bound violations scales to production programs on the order of hundreds
of thousands of lines of code. Even concurrency-related problems such as data
races and deadlocks can to some extent be checked statically, although often
resulting in false positives. However, going beyond these simple properties to ar-
bitrarily complex behavior specification and scaling to ever-growing production
program size is undoubtedly a challenge, and we cannot expect it to be fully
achieved within the 15 year time horizon of the challenge.

Hence, we will probably have to accept that parts of the verification task will
remain as proof obligations. It is reasonable to not throw such proof obligations
away, but to monitor them during program testing, or in the operations phase. In
the latter case, one can program reactions to property violations to achieve some
form of fault protection. We call the scientific discipline that studies monitoring
properties during program execution runtime verification [1]. Much work has
been done in this area within recent years.

In this paper we shall outline and classify some current approaches to run-
time verification and describe our contributions. We shall describe how we intend
to further contribute to this work in the framework of the Grand Verification
Challenge. The paper does not address the topic of test case generation although
runtime verification is a part of this subject. That is, an effectful test case gener-
ation framework needs to support the generation of test cases, where a test case
consists of inputs to the program together with an oracle that will inspect the
program when executed on that input. Generation of the oracle is the runtime
verification part. We believe that runtime verification is a rich subject on its
own.



2 Specification-Based Runtime Verification

Specification-based runtime verification monitors a program’s execution against
a user-provided specification of intended program behavior. The many approaches
to program specification lead to differing styles of runtime verification. One can
consider a spectrum of monitoring approaches, ranging from predicate assertions
stating properties about a single state at a single program location, to tempo-
ral assertions stating properties about temporally separated states at multiple
program locations identified by automated program instrumentation. We shall
discuss the techniques along four dimensions:

– Location quantification: whether the logic allows to quantify over locations
in the program to be monitored. Monitors evaluate when certain program
locations are reached during program execution. If the monitoring code is
executing in-line, these locations will contain the monitoring code itself. If
monitoring is off-line, the locations will contain event generators, that will
send events to the monitors that run in some more or less loose form of syn-
chronization with the code. Locations can either be specified individually,
by identifying each of them explicitly, or they can be quantified over, as in
Aspect Oriented Programming, covering many locations with one declara-
tion, for example ”before every call of a method defined in class C, evaluate
monitor M”.

– Temporal quantification: whether the logic allows quantification over time
points. For example, one can express properties of the form: “whenever a
call of method close occurs then in the past there has been a call of the
open method”. Some temporal logics only allow to state ordering relation-
ships, while others go further and allow to state relative or absolute time
values.

– Data quantification: whether the logic allows binding and referral (forward
or backward in time) to values across states. For example, “whenever a call
of method close(f) occurs, with a file argument f , then in the past there has
been a call of open(f) of the same file f .” Obviously, data quantification
presumes temporal quantification.

– Abstract data specification: whether abstract states mapping variable names
to values can be defined together with an abstraction that relates concrete
program states to abstract specification states.

In the following we shall classify a collection of monitoring approaches along
these dimensions.

Assertions Runtime checks are assertions inserted at specific locations in the
code. Assertions were introduced in Java 1.4 such that the programmer can
write assertions of the form assert ψ for a Java predicate ψ, at explicit pro-
gram locations. Assertions do not directly support location, temporal or data
quantification, nor abstract data specification.



Pre-Post Conditions Pre-post conditions is an extension of the assert statement,
where the programmer explicitly indicates where checks should be performed,
namely before and after method calls, hence not supporting location quantifi-
cation. However, a post condition typically relates the value of variables at the
start and the end of the method. Thus this is a restricted form of temporal and
data quantification. The Eiffel language [23] has long embodied this idea, and
recently so has JML [39], the annotation language for Java. In Eiffel there is
no provision for abstract data specification, while in JML there is. The Larch
Shared Language approach [41] supports abstract (axiomatic) data specification
in combination with pre-post conditions.

Invariants Invariants, as found in for example Eiffel and JML, express proper-
ties about a single state, and are required to hold at all locations where data
consistency can be expected, specifically at the completion of method calls, and
at the limit after every variable update. Hence this is an example of a logic sup-
porting location quantification. Since an invariant asserts a property of just the
current state it does not support temporal or data quantification.

State Machine Notations and Process Algebras In state machines/automata and
process algebras, the specification is an abstract program, and runtime verifi-
cation dynamically checks that the executing program is a refinement of the
abstract program. That is, the instrumented program locations correspond to
abstract program states, and monitoring checks the required state sequencing
and that each concrete program state satisfies (via an abstraction function) the
properties of a corresponding abstract state. This form of specification supports
temporal quantification. The Jass system [38] monitors a combination of JML
and CSP process algebra. Alternating automata, supporting AND as well as OR
states, have shown to be particularly convenient for monitoring logics as demon-
strated in [20, 26, 25]. Also state charts [30] offer this combination of AND and
OR states. An example illustrating the use of state machines for monitoring is
the TLChart system [22], that monitors a combination of temporal logic and
state machines. An extension of simple state machines are timed automata,
where time constraints can be put on states (one can only be in a state for a
certain time period) and on transitions. One such system for runtime verification
of timed automata is T-UPPAAL [52] and another similar system is described
in [12]. T-UPPAAL also generates test cases. All the systems mentioned above
monitor finite traces against finite trace automata. In [18] is described a tech-
nique for monitoring against Omega automata: automata that normally accept
infinite traces. This is specifically useful for monitoring automata generated from
specifications originally targeted for model checkers such as SPIN [51]. In [28] is
described an algorithm for synthesizing finite trace monitoring algorithms from
LTL specifications, inspired by similar algorithms used for synthesizing infinite
trace Omega automata from LTL specifications.

Temporal Assertions While automata and process algebras are operational in
nature, temporal logics are declarative. Temporal logics have operators that re-



late arbitrary states, and hence support full temporal quantification, and can
in many cases allow more succinct specifications. Pre-post conditions support
a simple form of temporal quantification by relating two states (the pre-state
and the post-state). In the commercial Temporal Rover system [20], one writes
past time and future time temporal logic formulas at specific program locations,
that get evaluated whenever that program location is reached. This tool hence
supports temporal quantification but not location quantification. The MaC sys-
tem [40] supports temporal past time assertions and location quantification by
allowing instrumentation of method calls and variable updates. MaC also al-
lows abstract data specifications referenced as the propositions of the temporal
logic. An interesting logic is the future time temporal logic PSL [43] adopted by
the hardware industry. In metric temporal logics one can state properties about
time. Several such systems have been developed, for example [20, 53]. Regular
expressions, and extended regular expressions allowing negation, appear to be
very useful for writing certain properties that in temporal logic would become
more complicated to state. Such a system is described in [48]. A generalization
of metric logics are data logics supporting data quantification, where one can
reason about data values existing at different time points. Such systems are de-
scribed in [21, 25, 19]. Temporal logics are often mapped to automata, although
other interpretations are possible, such as for example described in [46, 34], where
rewriting is used to interpret temporal logic for monitoring.

General Purpose Specification Languages A monitoring language may be a com-
plete formal specification language, in the style of ASML [6], Maude [15], PVS
[44], VDM [55], RAISE [45] or Specware [50]. This is the approach taken at Mi-
crosoft where ASML (Abstract State Machine Language) [6] is used for runtime
verification as part of a general test case generation framework. Clearly such an
approach supports abstract data specification. These full specification languages
usually have executable subsets which resemble a programming language, be it
functional or state-based. This observation can be exploited by having the spec-
ification language be an extension of the programming language, an approach
taken in Spec# [8], Microsoft’s extension of the work in [6].

3 Predictive Runtime Verification

As with testing, the effectiveness of runtime verification depends on the choice
of test suite. For concurrent systems this becomes even more serious because
this is compounded by the many possible execution paths of a non-deterministic
program. This raises the question of whether there are properties that can be
checked on one or a small number of execution traces and still identify bugs with
high probability (if such exist). The answer is affirmative due to recent work on
what we call predictive runtime verification.

In predictive runtime verification a property P to be monitored is replaced
with a stronger property Q, i.e. for all inputs x, Q(x) → P (x). Furthermore if
∀xP (x) then Q(x) for most x (few false positives) but if ∃x¬P (x) then ¬Q(x)



for most x (good detection). It turns out for certain problems finding such Q is
possible.

One of the earliest successes was the Eraser algorithm [47] for detecting data
races, that was implemented in Compaq’s Visual Threads tool [31]. This algo-
rithm checks a single execution trace in order to determine whether there are
any potentials for data races: the situation where two threads access a shared
variable simultaneously. This work has later been extended to cover other forms
of data races, such as higher level data races [4] and atomicity violations [5,
27, 57]. Also deadlocks of the dining philosopher format can be checked in this
manner [13]. A generalized predictive analysis framework is presented in [49]. In
most of the above mentioned systems, the properties are programmed directly
as algorithms in a traditional programming language. Attempts have, however,
been made to express the properties in logic [9]. These are often data oriented
properties that are best expressed in a monitoring logic appropriate for express-
ing data quantification and location quantification.

4 Instrumentation

Instrumentation is the modification of the target system with additional code
that informs the monitor of events and data values relevant to the monitored
properties, such as the taking of a lock, the entry into a method, or the update of
a variable. This can be achieved through source code instrumentation, for exam-
ple using Aspect Oriented Programming as supported by AspectJ [7]; through
byte-code instrumentation, BCEL [11] being an example byte-code instrumen-
tation tool; or through object code instrumentation, with Valgrind [54] being an
example. The Java-MOP system described in [14] is a generalized framework for
instrumenting Java programs specifically for runtime verification. Instrumenta-
tion can, however, also be done through debugging interfaces, modification of the
runtime system or virtual machine, or through operating system or middleware
services.

Naive instrumentation can cause significant degradation of performance and
is a significant concern for concurrent and real time systems. In our work we have
used byte-code instrumentation and Aspect Oriented Programming to instru-
ment code. Concurrent target systems may be modified by inclusion of wait state-
ments or modifications to schedulers, so that a full range of non-deterministic
behaviors are exhibited during testing. This is discussed in the overview paper
[24].

5 Our Previous Work

In this section we briefly outline our own and close colleague’s work in runtime
verification. Some of our early work [32] was done in predictive runtime verifi-
cation and resulted in a tool for performing predictive deadlock and Eraser-like
data race analysis on Java programs, guiding the Java PathFinder (JPF) model
checker [56] to confirm the warnings discovered by the much faster predicative



analysis. Instrumentation was done by modifying the Java Virtual Machine of
JPF. The work on predictive runtime verification was later re-implemented and
elaborated in the Java PathExplorer (Jpax) tool [35, 33]. Specifically the dead-
lock analysis algorithm was improved to yield fewer false warnings [13]. More
recent work on predictive runtime verification includes Cyrille Artho’s work that
goes beyond low-level data races on single variables, and includes detection of
high-level data races on collections of variables [4], and detection of out-dated
copies of shared variables [5]. Jpax also supports specification-based runtime
verification. The Maude rewriting system [15] is used to define new logics [46,
34]. This has proved extremely elegant since Maude is well suited for defining
the syntax and semantics of a logic. In [36, 37] we describe how to synthesize
very efficient algorithms based on dynamic programming for monitoring past
time logic.

In more recent work we decided to develop a runtime verification framework
for Java in Java. Eagle [10] is a powerful temporal kernel language support-
ing temporal quantification and capable of modeling all of the temporal logics
and most of the specification paradigms mentioned in this overview. Eagle is
an extension of propositional logic with three temporal kernel operators, re-
cursion, and parameterization over formulas in the logic as well as over data
values. Formula parameterization allows the user to define new temporal combi-
nators, and hence new temporal logics. The language therefore directly supports
the definition of new specification patterns of the kind illustrated in [42]. Data
parameterization allows to define properties relating data values from different
points in time, hence supporting data quantification. Due to these constructs
Eagle can define various forms of past and future time linear temporal logics,
real-time logics, interval logics, extended regular expressions and state machines.
Eagle furthermore supports abstract data specification in that formulas are in-
terpreted on an abstract state defined as a Java class, and referred to as the Eagle
state. In principle there is a stratification of the propositional language and the
logic proper so that Java may be replaced by a high-level specification language.
The user must define an abstraction mapping from concrete program states to
abstract Eagle states. At each instrumentation location in the monitored target
system, a method representing the abstraction function is called to update the
Eagle state. Noting that Eagle supports the definition of state machines, we see
that Eagle hence supports both data refinement and control refinement. A re-
cent extension of Eagle supports automated program instrumentation [17], hence
location quantification, using the Aspect Oriented Programming tool AspectJ
[7]. In previous work we developed the jSpy tool [29], which instruments Java
byte-code. A jSpy instrumentation specification consists of a set of rules, each of
which consists of a condition on byte-code and an instrumentation action stating
what to report when byte-codes satisfying the condition are executed. The re-
ported events are then picked up by the monitors that in turn check for various
user provided properties. Eagle has been used within a test-case framework as
described in [2, 3].



6 Future Work

As a scientific discipline specification-based runtime verification does not face the
same difficult problems as, say, model checking or theorem proving, and is likely
closer to become part of practical software development environments. However,
the discipline faces unsolved problems concerned with choice of specification no-
tations, monitoring algorithms, code instrumentation, as well as social issues
such the usual resistance amongst software developers to write formal specifica-
tions in addition to the code itself. We feel that predictive runtime verification
should be part of any development system since it is very effective, fully auto-
mated, requires no specifications, and essentially imposes only minor cost to the
programmer. The challenge is to identify other problems that lend themselves to
this form of analysis. Concerning specification-based runtime verification, choos-
ing the right specification formalism is critical to the success of the approach.
The formalism must be simple, yet powerful, and/or, it could be an already ac-
cepted notation, such as UML. We will continue experimenting with Eagle, but
we will also investigate other formalisms in order to achieve the optimal balance
between simplicity, efficiency and effectiveness. Amongst work not mentioned is
that on generating specifications from runs [16]. We intend to extend our work
in this direction.

References

1. 1st, 2nd, 3rd, 4th and 5th Workshops on Runtime Verification (RV’01 - RV’05),
2001–2005, volume 55(2), 70(4), 89(2), 113, TBP. of ENTCS. Elsevier Science
Direct. http://react.cs.uni-sb.de/rv2005.

2. C. Artho, H. Barringer, A. Goldberg, K. Havelund, S. Khurshid, M. Lowry,
C. Pasareanu, G. Rosu, K. Sen, W. Visser, and R. Washington. Combining Test-
Case Generation and Runtime Verification. Theoretical Computer Science, 336(2–
3):209–234, May 2005. Extended version of [3].

3. C. Artho, D. Drusinsky, A. Goldberg, K. Havelund, M. Lowry, C. Pasareanu,
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haviors of Java Programs at Runtime with Java-MOP. In Proceedings
of the 5th International Workshop on Runtime Verification (RV’05) [1].
http://react.cs.uni-sb.de/rv2005.

15. M. Clavel, F. J. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F.
Quesada. The Maude System. In Paliath Narendran and Michaël Rusinowitch,
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