
Decomposing Verification by Features?

Kathi Fisler1 and Shriram Krishnamurthi2

1 Department of Computer Science, WPI, Worcester, MA, USA
kfisler@cs.wpi.edu

2 Computer Science Department, Brown University, Providence, RI, USA
sk@cs.brown.edu

Abstract. Practical program verification techniques must align with
the software development methodologies that produce the programs.
Researchers from several corners of software engineering have proposed
similar models of program development in which modules encapsulate
units of end-user functionality known as features. These models ame-
liorate some difficulties with conventional modular verification, such as
property decomposition, while creating others, by contradicting assump-
tions that underlie most modern program verification techniques. This
paper motivates the decomposition of systems by features and provides
an overview of the challenges this poses to verification.

A Notion of Software Development

For program verification to thrive, verification methodologies must align with
software development methodologies. This means that verification tools should
be able to handle program fragments of the style and granularity that program-
mers produce. In addition, the effort to verify a program increment should bear
some reasonable ratio to the effort to develop that increment.

An important trend in software development poses particular challenges to
conventional methods of program verification. Our understanding of this trend is
inspired by the picture in Figure 1 which Michael Jackson used in his presenta-
tion at ESEC/FSE 2001 (following his acceptance of the SIGSOFT Outstanding
Research Award).3 The box at the lower-left might be grossly characterized as
the province of programming languages, proceeding from specifications to pro-
grams that, we hope, properly implement those specifications. This is the realm
of solutions, (in Jackson’s words, the solution space). The box at the upper-right
is the domain of requirements engineering: the collection of processes, many so-
ciological (and imprecise!), that glean requirements for a system from its users
and other stakeholders or, more broadly, from the fuzzy blob that is the “real
world”. In Jackson’s terminology, the transactions in this world must remain in
the problem space.

? This work is partially funded by NSF grants CCR-0305834, CCR-0132659, CCR-
0447509 and CCR-0305950.

3 We have transcribed this picture from our notes; a related version is in a paper [1].



The Real 
World

Specification

Program

Fig. 1. The requirements-program feedback loop.

As soon as the program comes into existence, however, it itself becomes a
part of the world. This invariably triggers a possibly new set of requirements. (As
most requirements engineers and user interface designers will attest, a common
user reaction is, “Oh, it does that?” followed by, “That is not what I meant
at all. That is not it, at all” [2].) This cyclic dependency and directed flow of
requirements is a source of many contemporary software development problems.
This suggests that our techniques for software development should account for
this by finding ways to be more pliable in the face of requirements changes.

Program Development Styles and Verification

These ideas have significant implications for program verification. Verification
research has often assumed a simplistic model of program development, in which
the verifier has a complete program to analyze against established requirements.
The body of work on modular verification relaxed that assumption to handle
portions of programs that correspond to units of separate compilation [3]. This
position paper argues that emerging forms of software development embody dif-
ferent assumptions from most current verification methodologies. It is therefore
essential for verification to support these development techniques; better still
would be if verification could exploit it.

Some researchers [4] believe verification should be organized around software
components. Unfortunately, the term “component” seems to mean too many
things (and often too little) in the literature. In particular, a component may or
may not have a direct relationship to the requirements that inspired the program
in the first place. (Sometimes it might; in other cases, it may be a generic unit
of reuse, such as a sorting routine or database interface.) We therefore believe
the emphasis must shift from using terms like “modules” and “components” to
discussing what the modules encapsulate.



Programs as Collections of Features

An end-user of a system typically does not care which database interface or sort-
ing routine is used in the implementation, or even whether they are used at all;
rather, users describe how they would like to see the system behave (via methods
such as use cases) as a collection of units of functionality that we call features.
When requirements change, they often either add or remove features, or change
a previously identified feature. Managing changes to features is therefore a key
problem in software development. If each feature is implemented by a specific
module, it becomes easier to identify where changes must be made. Furthermore,
if these modules meet the criteria of components laid out by Szyperski [5], then
creating the system is just a matter of component composition, while adding
and removing features is simply a matter of writing a new composition. In other
words, this style of program organization would respect the feedback loop in the
Jackson figure, observing that if the program’s shape mirrors the requirements,
changes in requirements will become easier to manage.

Writing these identifiable increments in conventional programming languages
is challenging because an increment may affect parts of a program across tra-
ditional module boundaries: such increments are said to be cross-cutting. This
observation has led to a growing body of work on developing new forms of
program modularity [6–16] that support modularization around features and
composition to create a variety of individual systems (thus forming a software
product line [17]). Some techniques are purely static, effectively manipulating
the program’s source, while others have dynamic elements, offering the ability
to reflect on the state of the program’s execution and then to modify it. There
is now a growing awareness of this style of programming (especially as popular-
ized by “aspect-oriented programming”), and several case-studies highlight its
feasibility and observe its benefits.

Research Program on Verifying Feature Modules

This model of program organization offers a substantial benefit to verification
as well. One of the main challenges in modular verification is the decomposition
of properties to align with the program module’s boundaries. In theory, feature-
orientation should largely eliminate this hurdle. As the user’s perspective frames
both the features (modules) and the properties, the scope of each property largely
matches the scope of some module (with the exception of global system proper-
ties). In return, feature-orientation demands new theories of modular reasoning
to support feature-based decompositions.

We have been working on techniques for modular model checking of feature-
based designs since 2001 [18–20]. At a high level, this work shares the goals of
other modular verification research, namely, to verify code fragments indepen-
dently and derive some properties of the composed program from the properties
of the fragments. The nature of feature-based design, however, adds some nu-
ances to this problem.



1. Since features are added to programs to provide some user-defined function-
ality, we may need to prove that adding a feature (a) preserves established
properties of programs, or (b) establishes a new property of the composed
program. In some models, a feature might (c) establish a property that the
original program should have satisfied, but did not.
Performing these analyses modularly is important because we could poten-
tially add many features to an existing program, at which point the cost of
analyzing each possible product (a subset of features) becomes prohibitive.
Feature-based design shifts the motivation for modular reasoning from mak-
ing verification tractable in terms of computational resources to making it
practical across the combinatorial number of products that can be built from
designer-specified program modules.

2. Features can interact, causing properties of individual components to be
violated in the composed program. In a telecommunications system, for ex-
ample, a voice mail feature might be required to pick up an unanswered
call after 4 rings and a call forwarding feature might be required to pass
an unanswered call along after 4 rings. A system with both voice mail and
call forwarding will respect only one of these requirements. Other examples
are far more subtle. This feature-interaction problem is pervasive and not
always amenable to formal analysis [21]. As model checking each combina-
tion of features for interactions is infeasible, modular analysis must support
detecting those interactions that can be captured formally.

To date, our work has focused on property preservation (nuance 1a) with pre-
liminary attention to feature interaction (nuance 2). We are able to model check
CTL properties against individual features and perform lighter-weight checks
to confirm that a feature’s properties will be preserved when composed into an
existing program. We are also able to modularly detect feature interactions that
manifest as violations of properties expressed in CTL. Our work has identified
several ways in which feature-based designs challenge the conventional assump-
tions of modular model checking:

1. Most modular verification work assumes parallel composition, while feature
composition is largely (though not entirely) sequential. This in turn has
interesting consequences:
– Module composition can create new paths through programs (parallel

composition deletes but does not add paths).
– CTL appears more appropriate for modular reasoning than LTL (whereas

LTL is arguably more effective under parallel composition [22]).
2. Modules are not closed because data from one module may persist into

another. For instance, in an email system, one feature may encrypt a message
and that attribute should persist into subsequent features, even though the
models of those features do not mention encryption.

3. One module may refine the interpretations of propositions in another. E.g.:
An email system may classify a message as anonymous if it has passed
through an anonymous remailer, but adding a digital signing feature forces



the interpretation of anonymity to also require the message to be unsigned.
Reinterpreted or persistent propositions often preclude lifting properties
proven of an individual module to the composed program.

Even more fundamental, however, is our growing understanding that verification
may be the wrong problem to solve. Traditional verification methods (especially
model checking) are primarily designed to authoritatively determine the truth
or falsity of properties over models. However, most of the property violations
we observe arise only upon composition, because some compositions satisfy the
properties while others fail them. Most verification runs over individual features
are invariably inconclusive because there isn’t enough information in the module
to entirely satisfy or fail the property. This pushes the verification decision onto
the composition step, which needs appropriate information that it can then use to
perform a lightweight check that (a) is not too expensive, and (b) does not involve
re-examining the innards of the individual modules. The appropriate analysis on
individual modules is therefore some form of constraint generation, rather than
outright verification. In our work on this approach [18] the constraints have been
propositional and temporal, reflecting their foundation in model checking.

The need for constraint generation in practice does not contradict our ear-
lier claim that properties align naturally with features. The truth of a property
in a feature often depends on two specific pieces of information from the fea-
ture’s environment: (1) whether control paths exiting the feature reach particular
states in the original program, and (2) the values of persistent and reinterpreted
data propositions determined in earlier features. Our proposed constraint gener-
ation is akin to generating environmental constraints; this step is feasible in our
work because we generate environments specific to the program properties that
a feature must preserve. The checks required to discharge these constraints at
feature-composition time tend to be lightweight (simple propositional or reach-
ability checks) because the feature that aligns with a property discharges the
bulk of that property’s obligations.

Some Challenges

Our observations leave open a large collection of interesting research problems.
Some questions that need to be addressed include:

– Theoretical foundations for richer notions of composition. Most verification
research is built on purely sequential composition or variations (synchronous,
interleaved, etc) on parallel composition. The composition models in many
feature-oriented programs lie between these extremes. We have studied pro-
grams that employ what we call quasi-sequential composition [19]: at the
highest level, modules compose sequentially, but each module is formed of
components that compose in parallel. This form of composition is interest-
ing because it leads to states in the global state space that span different
modules, but in controlled and predictable ways.



– Techniques for generating temporal constraints rich enough to support mod-
ular feature verification.

– Techniques for determining whether a code fragment introduces a desirable
though previously untrue property over a program.

– Theories of compositional reasoning that are tuned for predicting feature
interactions errors, as opposed to checking for success or failure of known
properties.

Perspective

We find it telling that several researchers, working independently and in en-
tirely distinct areas (often without any knowledge of each other), have within a
few years proposed extremely similar models of software development centered
around features. We believe that Jackson’s picture explains why this model is not
accidental, but rather fundamental to the way programs originate and evolve.
Without lapsing into thoughts of silver bullets, we should take this model seri-
ously, especially as formal programming language research is beginning to catch
up with these less formal approaches (several papers [23–26] offer a represen-
tative sampling). Any attempt to lay the foundations for a practical program
verifier must look ahead to how programs will be developed in the future, not
only at programs written using antediluvian methods in legacy languages.

References

1. Jackson, M.: Why software writing is difficult and will remain so. Information
Processing Letters 88 (2003) 13–25

2. Eliot, T.S.: The love song of J. Alfred Prufrock. In: Prufrock and Other Observa-
tions. The Egoist, Ltd., London (1917)

3. Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on Pro-
gramming Languages and Systems 17 (1995) 507–534

4. Xie, F., Browne, J.C.: Verified systems by composition from verified components.
In: Joint European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, New York, NY, USA, ACM Press (2003) 277–286

5. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley (1998)

6. Aßmann, U.: Invasive Software Composition. Springer-Verlag (2003)
7. Batory, D.: Feature-oriented programming and the AHEAD tool suite. In: Inter-

national Conference on Software Engineering. (2004)
8. Batory, D., O’Malley, S.: The design and implementation of hierarchical software

systems with reusable components. ACM Transactions on Software Engineering
and Methodology 1 (1992) 355–398

9. Findler, R.B., Flatt, M.: Modular object-oriented programming with units and
mixins. In: ACM SIGPLAN International Conference on Functional Programming.
(1998) 94–104

10. Harrison, W., Ossher, H.: Subject-oriented programming: a critique of pure ob-
jects. In: ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages & Applications. (1993) 411–428



11. Jackson, M., Zave, P.: Distributed feature composition: A virtual architecture
for telecommunications services. IEEE Transactions on Software Engineering 24
(1998) 831–847

12. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: European Conference on Object-
Oriented Programming. (1997)

13. Lieberherr, K.J.: Adaptive Object-Oriented Programming. PWS Publishing,
Boston, MA, USA (1996)

14. Mezini, M., Lieberherr, K.: Adaptive plug-and-play components for evolutionary
software development. In: ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages & Applications. (1998) 97–116

15. Smaragdakis, Y., Batory, D.: Implementing layered designs and mixin layers. In:
European Conference on Object-Oriented Programming. (1998) 550–570

16. van Ommering, R.: Building Product Populations with Software Components.
PhD thesis, Rijksuniversitat Groningen (2004)

17. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley (2002)

18. Blundell, C., Fisler, K., Krishnamurthi, S., Hentenryck, P.V.: Parameterized in-
terfaces for open system verification of product lines. In: IEEE International Con-
ference on Automated Software Engineering. (2004)

19. Fisler, K., Krishnamurthi, S.: Modular verification of collaboration-based software
designs. In: Symposium on the Foundations of Software Engineering, ACM Press
(2001) 152–163

20. Li, H.C., Krishnamurthi, S., Fisler, K.: Modular verification of open features
through three-valued model checking. Automated Software Engineering 12 (2005)
349–382

21. Keck, D.O., Kuehn, P.J.: The feature and service interaction problem in telecom-
munications systems: A survey. IEEE Transactions on Software Engineering 24
(1998) 779–796

22. Vardi, M.Y.: Branching vs. linear time: Final showdown. Available at
http://www.cs.rice.edu/ vardi/papers/index.html (2001)

23. Ancona, D., Lagorio, G., Zucca, E.: Jam—designing a Java extension with mixins.
ACM Transactions on Programming Languages and Systems 25 (2003) 641–712

24. Flatt, M., Krishnamurthi, S., Felleisen, M.: Classes and mixins. In: ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. (1998)
171–183

25. Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., Mi-
haylov, N., Schinz, M., Stenman, E., Zenger, M.: An overview of the Scala pro-
gramming language. Technical Report IC/2004/64, EPFL Lausanne, Switzerland
(2004)

26. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.: Traits: Composable units of
behavior. In: European Conference on Object-Oriented Programming. (2003) 248–
274


