Implications of a Data Structure Consistency Checking
System

Viktor Kuncak, Patrick Lam, Karen Zee, and Martin Rinard

MIT Computer Science and Artificial Intelligence Laborator
32 Vassar Street, Cambridge, MA 02139, USA
{vkuncak, pl am kkz, ri nard}@sail.mt.edu

Abstract. We present a framework for verifying that programs corgeptieserve impor-
tant data structure consistency properties. Results framnoplemented system indicate
that our system can effectively enable the scalable vdific®f very precise data structure
consistency properties within complete programs. Ouresydteats botlinternal proper-
ties, which deal with a single data structure implementatimdexternalproperties, which
deal with properties that involve multiple data structusegey aspect of our system is that
it enables multiple analysis and verification packages talyctively interoperate to ana-
lyze a single program. In particular, it supports the tagdeise of very precise, unscalable
analyses in the context of a larger analysis and verificatystem. The integration of differ-
ent analyses in our system is based on a common set-baséficatien language: precise
analyses verify that data structures conform to set spatiiits, whereas scalable analyses
verify relationships between data structures and pretiondiof data structure operations.
There are several reasons our system may be of interest oaddrprogram analysis and
verification effort. First, it can ensure that the progrartiséi@s important data structure
consistency properties, which is an important goal in aniiseff. Second, it can provide
information that insulates other analysis and verificatamis from having to deal directly
with pointers and data structure implementations, thessiabling these tools to focus on
the key properties that they are designed to analyze. Ijwed expect other developers to
be able to leverage its basic structuring concepts to eriadlscalable verification of other
program safety and correctness properties.

1 Introduction

This paper discusses a set of issues that arise in the vBaficaf sophisticated pro-
gram correctness and consistency properties. The backadrdpis discussion is our
experience building the Hob program analysis and verificasiystem, which verifies
that programs correctly preserve detailed data structomsistency properties. There
are several reasons that this experience is relevant tayarlgrogram analysis and
verification effort. Data structures usually play a centaé in the program. Other
kinds of program correctness properties often depend oddteestructure consistency
properties. Analyses that are designed to verify other namogcorrectness properties
must therefore incorporate (and in some cases interac) wWithanalyses that verify
data structure consistency properties. Failure to eithafywdata structure consistency
properties or to present these properties in a form that@tpfurther analysis can
therefore threaten the entire program verification effort.

Data structure consistency properties are also some ofdlseahallenging program
properties to analyze and verify. Data structure consisteften involves complex re-
lationships between pointers, arrays, and unbounded msmbdata objects. There is
no consensus on an abstraction or analysis that would labsifor effectively reason-
ing about such properties. Indeed, recent years have seelifanation of abstractions
and analyses, each with an ability to support the verificatiba particular class of
data structure consistency properties [2, 8, 15, 24, 2 ¢uidtently seems unlikely that

any single approach will prove to be successful for the futige of data structures that
developers will legitimately desire to use. Any system tngrcomes these substan-
tial difficulties to successfully verify detailed data stture consistency properties in
non-trivial programs is therefore likely to provide contepnd approaches that will be
relevant to other analysis and verification efforts. We el specific contributions

that our concepts, system, and overall approach can makbrtmad program analysis

and verification effort.

Data Structure Consistency PropertiesData structure consistency properties are im-
portantin and of themselves. Our system shows, for the ifingt, thow to automatically
verify detailed data structure consistency propertieimglete programs. In particu-
lar, it shows how multiple analysis and verification systaran cooperate to verify a
diverse range of properties.

Foundational System. Pointers and the data structures that they implement arg a ke
complication that any analysis or verification system masteshow deal with. In many
cases pointers are tangential to the primary focus, buteifathalysis or verification
system does not treat them soundly, the system can deliwerract results. One con-
tribution of our system is that it provides a layer that erstdgtes the pointers behind
data structure interfaces and provides a characterizafitime properties that objects
accessed via pointers or retrieved from data structuresfys@dur system builds on this
layer, as can other systems, to obtain the data structurpa@nter information needed

to provide correct results.

Transferable Concepts and Approaches.Our framework provides several concepts
and approaches that developers ought to be able to levetagetivey build their anal-
ysis and verification tools. Approaches that we think will ieéevant in other areas
include 1) our approach for applying very precise, unsdalabalyses to targeted sec-
tions of the program as part of a broader scalable analysisarification effort and
2) our technique for eliminating specification aggregati®action 2.3), which occurs
when procedure preconditions propagate up the procedlitdearchy to complicate
the specifications of high-level procedures.

Multiple Interoperating Analyses. One of the major themes of this paper is the need
for multiple analysis and verification systems to intergpeto analyze the same pro-
gram. Attempting to build a single general system that sralianalysis and verification
problems in a uniform way is counterproductive—it forcesmgvotential developer to
understand the system and work within it if they are to cbateé and makes it diffi-
cult to combine results from different, potentially indepently developed, program
analysis and verification systems.

2 The Hob System

The Hob system is based on several observations about datauseés and how systems
use them.

Encapsulated Complexity. Many data structures are designed to provide efficient
implementations of relatively simple mathematical alitioms such as sets, relations,
and functions. Appropriately encapsulating the data sirecimplementation behind
an abstraction boundary (as in an abstract data type) ceotigéfly encapsulate this
implementation complexity. The complexity of the data stawe (and therefore the
complexity of reasoning about its consistency properigsybstantially larger inside
the implementation than outside the implementation. Itigaar, it is usually possible

to completely encapsulate any use of pointers within tha skaticture implementation.
This encapsulation eliminates the need for analyses ofgiatature clients to reason
about pointers—they can instead simply reason about thieemreitical abstraction that
the data structure implements.

Internal and External Consistency Constraints. In most programs there are two
kinds of data structure consistency constrailritternal constraintsdentify properties
of a single encapsulated data structure. These constrgiitally deal with elements of
the low-level representation of the data structure sucklaseonships between pointers
and array indiceExternal constraintson the other hand, involve multiple data struc-
tures and typically deal with individual data structureshat level of the mathematical
abstraction that the data structure implements. A typigtdreal constraint might, for
example, state that one data structure contains a subgat objects in another data
structure.

Client Dependence. Many data structure implementations will violate theireimtal
consistency constraints if their clients use them incdlyeEor example, a linked list
implementation may corrupt its internal representaticasKed to insert an object into
the list that is already present. Any practical data stmectonsistency analysis must
therefore analyze both data structure implementationskemnts.

Diversity. Known data structures have a diverse range of internal stamgiy prop-
erties. Moreover, new data structures may very well comke néw and unanticipated
kinds of properties.

Based on these observations, the overall design and appobdbe Hob system
differs substantially from previous data structure analggstems.

2.1 Decoupled Approach With Multiple Cooperating Analyses

In our approach, each data structure is encapsulated in almedhich consists of three
sections: an implementation section, a specification@ectind an abstraction section
(which provides definitions for abstract variables). Titmplementation sectioof a
Hob module is written in a standard imperative language.speeification sectioof a
module is written in terms of standard mathematical abstnag such as sets of objects.
Each exported procedure has a precondition and postcondaitipressed as first-order
logic formulas in the language of sets. To illustrate thedfésof set interfaces, Figure 1
presents the specification section of a module implememtidgubly-linked list with
an iterator. Note how complex manipulations of a list datacttire are replaced by
a relationship between the values of sets before and afteredure execution. The
abstraction sectiotis written in whatever language is appropriate for the asialthat
will analyze the implementation. This section indicategpresentation invariant that
holds whenever control is outside of the data structure émgintation, and provides
the values of abstract variables (sets) in terms of the edasariables (the values of
fields of a linked data structure or expressions involvirabgl arrays).

While this design adopts several standard techniquesr{gmta, the use of pre-
conditions and postconditions to support assume/guaaegsoning), it deploys these
techniques in the context of very strong modularity bouiggathat fully decouple the
analyses. In particular, it is possible to apply differemalgses to verify different data
structure implementations and clients. Moreover, the derily of of each individual
data structure implementation is encapsulated behindatsestiucture’s interface. Here
is how this design has worked out in practice.

spec nmodul e DLLIter {
format Node;
specvar Content, Iter : Node set;
invariant Iter in Content;

proc i sEnpty() returns e: bool
ensures not e <=> (card(Content’) >= 1);
proc add(n : Node)
requires card(n)=1 & not (n in Content)
nodi fi es Content
ensures (Content’ = Content + n);
proc renmove(n : Node)
requires card(n)=1 & (n in Content)
modi fies Content, Iter
ensures (Content’ = Content - n) & (lter’ = Iter - n);

proc initlter()
requires card(lter) =0
nodifies Iter
ensures (lter’ = Content);
proc nextlter() returns n : Node
requires card(lter)>=1
nodifies Iter
ensures card(n’')=1 & (n’ in Iter) & (lter’ =1lIter - n');
proc isLastlter() returns e:bool
ensures not e <=> (card(lter’) >= 1);
proc closelter()
nodifies Iter
ensures card(lter’) = 0;

Fig. 1. Specification Section of a Doubly Linked List with an Itenato

Multiple Targeted Analyses. We have developed a variety of analyses, with each
specific analysis structured to verify a specific, fairlynoar class of data structures.
The ability to target each analysis to a specific class of datectures has provided
substantial benefits. Eliminating the burden of buildingrgle general analysis has
reduced the overall development overhead and enabled usdoge very narrow but
very sophisticated analyses with relatively little engirieg effort. It has also reduced
the amount of broad expertise any one person needs to atcguievelop an analysis.
Finally, it has enabled us to simply decline to implementhpematic special cases.
These properties have made it much easier for us to bring@tagether to work on the
system since the barrier to entry (in terms of required @oganalysis and verification
expertise) to development effort for any one analysis amgch smaller.

Interoperating Analyses. We have been able to productively apply multiple cooper-
ating analyses to the same program. This property has besstugddy crucial to de-
veloping a reasonable system in a reasonable amount of tithe&s-given us effective
abstraction barriers that have allowed us to decoupleiithgial development tasks and
farm these tasks out to different people. This developmeategy has had two key
benefits: first, it has allowed us to parallelize the work, sedond, it has allowed us to
bring the strengths of multiple people to bear on the projeith each person given a
task best suited to his or her capabilities.

Relief from Onerous Scalability RequirementsBecause the data structure interfaces
are written in terms of high-level mathematical abstrawtifrather than implementation-
level concepts such as pointers), the data structure ingsi&ation complexity remains
encapsulated inside the implementation and is not expastuktclient. Of course, a
data structure’s implementation must be analyzed usingesamalysis technique. Be-
cause implementations may be arbitrarily complicated, lz@xhuse our system aims

to verify sophisticated data structure consistency prigserit is difficult to imagine
any suitable analysis which could scale to sizable progratoaever, our design elim-
inates any need for any single data structure analysis te-s@m analysis needs only
analyze the data structure implementation, leaving théysisaof the clients to simpler
and more scalable analyses.

Consider the implications of this approach. Roughly spegkinuch of the history
of program analysis deals with managing the trade-off betwsralability and preci-
sion. To a first approximation, it is relatively straightfard to build an analysis or
verification strategy for almost any property of interestaalability is not a concern. It
has also proved to be possible to build analyses of almo#tampscalability [25, 26]
as long as precision is not a concern. Building scalablesigeeanalyses has, however,
eluded the field despite years of effort. Our approach ateigproblem by 1) limiting
the amount of code that any one internal data structure si@mgly analysis is respon-
sible for processing to the data structure implementatimtecand 2) enabling the use
of less precise, more scalable analyses outside of the WlatéLse implementations.

The result is that we have been able to effectively use aeslyose scalability
limitations would be prohibitive in any other context. Sifieally, we have used anal-
yses with exponential and super-exponential complexi®y §hd even made good use
of interactive theorem proving [30].

2.2 Clean Analysis Problems

One of the key problems that program analysis and verifioatsearchers have strug-
gled with is what abstraction to use for programs with pomig, 15, 20]. Indeed, this
question is still open today and is the subject of much orgyo#search. Standard ap-
proaches have used either special-purpose logics [18] plemmentation-oriented ad-
hoc formalisms such as graphs [23]. The result is that thd fiak been effectively
estranged from many years of research into more standattematical foundations,
which have provided a significant body of potentially use@sdults in areas such as set
theory and more standard logics.

Our elimination of pointers as a concept outside of dataciire implementations
has enabled us to use more standard mathematical absisa(g&ts and relations) for
the majority of the program. This has, in turn, allowed us ffedively draw on the
large body of research on the properties of these standateematical abstractions.

2.3 Specification Aggregation

During our development of the system we encountered a prottiat, as far as we can
tell, will complicate all attempts to use assume/guarargasoning to achieve modular
program verification. Assume/guarantee reasoning stattisprocedure preconditions
and postconditions. To verify a procedure call, it traredate precondition into the
caller’s context, verifies that the analyses or verificafamt at the point before the pro-
cedure call implies the translated precondition, thendlaas the postcondition into
the caller context to obtain the analysis or verificatiort faicthe point after the pro-
cedure call. It can verify that the procedure correctly iempénts its precondition and
postcondition independently. In this way, assume/guarrgasoning enables modular
program analysis and verification.

If we attempt to apply this reasoning approach, however,ao® sun intospecifi-
cation aggregationTo verify the precondition of the invoked procedure at acpdure
call site, we typically have to include some form of the pmedition in the precondi-
tion of the calling procedure. The preconditions theretaygregate as we move up the

procedure call hierarchy. At the top of the hierarchy thecpture preconditions and
postconditions can become unmanageably complex. Morgtihveneed to aggregate
preconditions and postconditions violates the modulartyhe program, as the pre-
conditions of leaf procedures inappropriately appear égreconditions of transitive

callers; in principle, these transitive callers should baware of the low-level imple-

mentation details of the procedures that they invoke.

Our solution is to use aspect-oriented concepts to pulkiamés out into specifica-
tions on the side of the program [11]. TReopeconstruct identifies the invariant and
the part of the program that may update the involved stateal® these invariants
do not appear in procedure preconditions and postconditthry do not participate in
any specification aggregation that would otherwise ocche dnalysis or verification
algorithm does, however, have access to the invariant andsmit to prove properties
anywhere exceptin the region of the program that may upHetvolved state. Scopes
different from hierarchical structuring mechanisms inttteey can contain arbitrarily
overlapping modules and avoid the problem of dominant @nogidecomposition. The
scope construct works well with data structure consistgmoyperties, since they tend
to be true throughout most of the program and updated onblatively small portions.
The end result is a substantial simplification of the spedtifim of the program.

2.4 Experience

We have built a prototype system and used this system tongerdnge of data structure
consistency properties [10-12, 30]. As expected, we haea bble to use unscalable
analyses to verify very detailed internal data structumesisiency properties. Specific
properties include the consistency of linked data strestiwuch as linked lists (both
singly and doubly linked lists), trees, and array-based ditictures. Our system is the
first to verify such properties in the context of completegveoms.

Our system has also been able to use the results of the analytside the data
structure implementation to verify that the program usesiita structure correctly. In
particular, we have also been able to use multiple analyséseosame program, then
combine the analysis results to verify higher-level camsisy properties that involve
multiple data structures. These properties include catioels between data structures,
for example that two data structures contain disjoint sétbfects. These properties
often capture application-level constraints; for insgrio our Minesweeper program
[10], we verify that the set of revealed cells is disjointrfréhe set of hidden cells.

Our system, perhaps surprisingly, enables developersrtfy y@ogram correct-
ness properties that may not appear, at first, to be datdwsteumonsistency properties.
Specifically, we have been able to express typestate piepeftobjects and verify that
programs do not invoke operations on objects when they ateimwrong typestate.

We have verified programs that are roughly one to two thoukaesllong and con-
tain multiple data structures analyzed by different aredy$/1oreover, these programs
implement complete computations such as the popular Mieeper game, Water (a
scientific computation that simulates liquid water) [3]damweb server. Our ability to
demonstrate that our system is capable of verifying largegqams is limited largely
by our ability to develop or port these programs.

3 Comparison to Some Related Approaches

Frameworks for formal software development use the ideat tefinement [7, Chap-
ter 8] but achieve levels of automation similar to the usewfsystem with an inter-
active theorem prover alone [30]. The use of the full strergftour system provides

a greater degree of automation compared to approaches passg on verification
condition generation and interactive theorem provingpkisao the use of decision pro-
cedures and techniques for loop invariant inference. Likedur system acknowledges
the importance of both aspects of the verification: the \aaiiion of data structure im-
plementations and the verification of data structure dielmt contrast, most existing
static analysis approaches verify only the clients of faies, typically expressed as
finite state machines [1, 6], [22, Chapter 6]. The interfaoeslob are more expres-
sive than finite state machines, because they can expretesdiate properties of an
unbounded number of objects, and because they can exprdasatity constraints on
the number of objects that satisfy a given property. Reseaschave also explored the
verification of the usage of interfaces that are based ondidgr logic [19]. Imple-
mentations of abstract data types have also been verifiad USILA [14]. Integration
of these two sides of the verification in TVLA using assumeafgmtee reasoning is
the subject of ongoing research [28, 29]. Our approach in Was to single out the
simple, yet powerful abstraction of global sets and expllbesrange of properties that
such interfaces support [12]. Hob and the Spec# verifierd@}ess different points in
the design space. Whereas Hob adopts a simple model of etatms using modules
and introduces new constructs for exploring novel oveiilagmter-module grouping
mechanisms such as scopes, Spec# uses instantiatabksdasthe main unit of en-
capsulation and remains close to its starting point, thgqamming language C#. Re-
garding the level of automation, Hob appears to provide naotemated handling of
reachability properties in tree-like data structures, ighe Spec# has more support for
arithmetic; these differences are partly a consequencesifd decisions and partly a
conequence of the decision procedures employed in thesgystems. Finally, there is
currently little emphasis of on abstract specification alles in Spec#, whereas Hob
uses them as the starting point for scalable analysis oftigest parts of the program.

4 Implications for Other Efforts

We see our system as relevant to other analysis and venficafforts in two ways.
First, our treatment of pointers and data structures careses a foundation for other
analysis or verification efforts that must deal somehow wpithgrams that contain
pointers and data structures. We envision analyses whosamrfocus is not to verify
detailed properties involving data structures or pointbta that rely on the truth of
some incidental data structure properties for the anatgsésicceed. We envision our
analysis providing these other analyses with a relativie$itract, tractable, and verified
view of the data structures and pointers. Ideally, our sysi@uld give the developers
of the new analysis or verification system the informatiaytheed quickly and easily,
enabling them to productively focus their efforts on theljfeon of interest.

Second, we believe that the developers of other analysesomayple to use sev-
eral of the concepts from our system to build analysis fraorks/for their analysis
problems. By building on these concepts, these analysisefnarks would be able
to support the targeted application of multiple very preciateroperating, unscalable
analyses in a scalable way to a single program. We view oasids likely to be partic-
ularly useful when there is some relatively small part of ph@egram that manipulates,
in a fairly complex way, a clearly delineable part of thes{aither of the program itself
or of some system that it interacts with). Outside this sipatt of the program the state
may be of interest but there is nothing complex going on. Wtéta structures provide

a canonical example of such a situation, we believe thatthéic pattern is pervasive
in modern software.

5 Future Work

We have implemented a prototype system Hob [13] for vergdata structure consis-
tency and successfully applied it to a range of programsei@ésurther problems are
worth exploring as we move forward; many of these probleresnat specific to the
domain of data structure consistency properties.

Specialized analyses and libraries of verified data structtes. Among the strengths
of our approach is the ability to verify a wide range of prdjsrfor a variety of data
structures. This strength comes from the availability afcsplized analyses for com-
mon data structures. Researchers have successfully gterifiny properties of tree-like
data structures; on the other hand, there are fewer extsuitsen data structures that
use arrays and non-tree-like data structures. Many impbsaiad complex data struc-
tures are still to be verified (potentially even using inteisee theorem proving [30])
and then included into a library of verified data structuk®s.expect that, as such li-
braries grow, there will be many common reasoning pattdraiswill allow the results
of verification to be extrapolated into fully automated gsak. Our approach supports
such incremental development because it supports botlaatiee theorem proving and
analyses with an increasing degree of automation.

Relevant tractable fragments of general-purpose logics.By using logical formu-
las to communicate analysis results, our system makes veeodent to build analyses
that themselves use logic to encode dataflow informatioidénthe implementations
of modules. Such analyses are often precise and predidiabbause it is possible to
describe the class of properties to which they apply. Itésgfore useful to explore new
classes of computationally tractable fragments of logick@nstraints that can be used
as a basis for analyses. We suggest defining these logicagaednts of general logics
such as typed set theory, which have proven successfulimaiaring a wide range of
properties. The study of logical fragments allows us to dggpecialized algorithms
while retaining simple semantics and the ability to commate between different anal-
yses. Our experience suggests that, although traditidesdifications based on simple
syntactic criteria are still useful [4, 9], data structuomsistency constraints are likely
to yield new kinds of classifications and new ways of definigcdasses of logics [17].

Experience from larger applications. Experience from using our techniques in the
context of larger applications would further contributeuttderstanding the data struc-
ture consistency problem. We expect that the problem ofraledata structure consis-
tency is essentially the same as for smaller applicatioitl,larger applications having
greater diversity and wider data structure interfacesyfpsrt many usage scenarios).
We also believe that we have identified some of the high-lda&h structure consis-
tency properties (such as disjointness and inclusion)atelikely to generally useful.
It remains to investigate classes of more complex hightpraperties. It is possible
that most of these properties will be domain-specific, witfedent kinds of useful and
tractable constraints applicable to different domains.

Supporting common language features. To obtain experience with larger applica-
tions, it is important to support the features of commonkdigrogramming languages.
The evolution of languages has simultaneously contribddefitatures that simplify
program semantics (such as memory safety and the abilitydode simple invariants
using types) and 2) features that complicate reasonind @sitiigher-order functions,

continuations, dynamic dispatch, exceptions, reflectimd, concurrency). An attempt
to handle the worst-case scenario arising from the use sétfeatures is not likely to be
fruitful; it is instead important to consider the patternsihich these features are used
and adapt the analyses to work reasonably well in these .dasaddition to making
the automated analysis of these features practical, tlly stuthese patterns is likely
to yield important results in programming methodology amdgpamming language
design.

Correctness of analysis resultsOne of the major themes of this paper is the need for
multiple analyses to interoperate on the same programilydaplementors will have
maximum flexibility in the implementation of these analyssabling the full range of
implementors to bring their skills effectively to bear andk®a a contribution. In par-
ticular, we envision developers with varying areas of etiperlevels of competence,
and programming styles and inclinations. Any time one corabihe work of multiple
people, questions of competence and trust arise. An ermr@ranalysis or verification
can call the entire result into question. We therefore beltdat it is important to build
a system that can verify the results of the various analysgserifications. Such a sys-
tem would accept and verify proofs of correctness of thelt&swe envision a system
similar to Credible Compilation [16, 21] in which each arsyor verification system
would generate, for each part of the program it processemd that the specific result
it generated on that analysis or verification is correct.

6 Conclusion

We are becoming ever closer to having the basic requirenreptace for a successful
and ambitious program analysis and verification projecteegnized and growing
acknowledgement of the need for more reliable softwarerdlaecomputing power
necessary to support the required reasoning, and a comnufiitogram analysis and
verification researchers that, given an appropriate tinte space budget, is able to
deliver algorithms that extract or check virtually any wadifined property of interest.

Important remaining barriers include techniques that dattively with pointers
and data structures and, especially, ways to bring multiplyses together to interop-
erate during the analysis of a single program. It is espgdmaportant to support the
targeted application of unscalable approaches in the xboita larger scalable analysis
effort—these unscalable analysis and verification algori are the only way to verify
the precise, detailed properties to which any successhlyais and verification effort
must aspire.

We have addressed all of these issues in the context of thesytbm for verify-
ing data structure consistency. This system provides att@fe analysis interface for
providing other analyses with pointer and data structuferimation. It has also em-
ployed a range of techniques that have enabled the suctessfdinated application
of a range of unscalable analyses to complete programseThekniques, and espe-
cially the concepts behind them, should generalize to entigl construction of other
systems for scalably verifying very precise program sadeiy correctness properties.

References

1. T.Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Auiatic predicate abstraction of C programs.
In Proc. ACM PLD] 2001.

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# prograng system: An overview. IGASSIS
2004: International Workshop on Construction and AnalysfiSafe, Secure and Interoperable Smart
devices March 2004.

o

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

W. Blume and R. Eigenmann. Performance analysis of ptizaflg compilers on the Perfect Bench-
marks programslEEE Transactions on Parallel and Distributed Syste8(§):643—-656, Nov. 1992.

. E. Borger, E. Gradel, and Y. Gurevichhe Classical Decision Problenspringer-Verlag, 1997.
. D.R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pmrded structures. IRroc. ACM PLD|

1990.

. M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitiveramgerification in polynomial time. IRroc.

ACM PLDI, 2002.

. C. B. JonesSystematic Software Development using VV[P¥entice Hall International (UK) Ltd., 1986.
. V. Kuncak, P. Lam, and M. Rinard. Role analysisPioc. 29th POP|.2002.
. V. Kuncak and M. Rinard. Decision procedures for setedlfields. Inlst International Workshop on

Abstract Interpretation of Object-Oriented Languages@@IL 2005) 2005.

P. Lam, V. Kuncak, and M. Rinard. On our experience wittdutar pluggable analyses. Technical
Report 965, MIT CSAIL, September 2004.

P. Lam, V. Kuncak, and M. Rinard. Cross-cutting techegin program specification and analysis. In
4th International Conference on Aspect-Oriented Softvizeeelopment (AOSD’'052005.

P. Lam, V. Kuncak, and M. Rinard. Generalized typestaéeking for data structure consistency.6th
International Conference on Verification, Model Checkimgl @\bstract Interpretation2005.

P. Lam, V. Kuncak, and M. Rinard. Hob: A tool for verifyirdata structure consistency. Inith
International Conference on Compiler Construction (toehwb) April 2005.

T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Puttingt&tanalysis to work for verification: A case
study. Ininternational Symposium on Software Testing and Angl26i80.

T. Lev-Ami and M. Sagiv. TVLA: A system for implementingasic analyses. Ifroc. 7th International
Static Analysis Symposiuyr2000.

D. Marinov. Credible compilation. Master’s thesis, ashusetts Institute of Technology, 2000.

B. Marnette, V. Kuncak, and M. Rinard. On algorithms anthplexity for sets with cardinality con-
straints. Technical report, MIT CSAIL, August 2005.

P. O’Hearn, J. Reynolds, and H. Yang. Local reasoningitapmgrams that alter data structures. In
Proc. CSL, Paris 2001volume 2142 of.NCS 2001.

G. Ramalingam, A. Warshavsky, J. Field, D. Goyal, and i Deriving specialized program analyses
for certifying component-client conformance. Pnoceeding of the ACM SIGPLAN 2002 Conference on
Programming language design and implementatijpeges 83-94. ACM Press, 2002.

J. C. Reynolds. Separation logic: a logic for shared bietdata structures. Ih7th LICS pages 55-74,
2002.

M. Rinard and D. Marinov. Credible compilation with p@irs. InProceedings of the Workshop on
Run-Time Result Verificatiori999.

N. Rinetzky. Interprocedural shape analysis. Mastkesis, Technion - Israel Institute of Technology,
2000.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysbblems in languages with destructive
updating. ACM TOPLAS20(1):1-50, 1998.

A. Salcianu and M. Rinard. Purity and side effect analjwi java programs. IRroc. 6th International
Conference on Verification, Model Checking and Abstraarpetation January 2005. To appear.

B. Steensgaard. Points-to analysis in almost linea.timProc. 23rd ACM POPLSt. Petersburg Beach,
FL, Jan. 1996.

Y. Xie and A. Aiken. Scalable error detection using baalsatisfiability. POPL’'05 2005.

J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using etatecking to find serious file system
errors. InOSDI'04, 2004.

G. Yorsh, T. Reps, and M. Sagiv. Symbolically computingstyprecise abstract operations for shape
analysis. InlOth TACAS2004.

G. Yorsh, A. Skidanov, T. Reps, and M. Sagiv. Automatisuase/guarantee reasoning for heap-
manupilating programs (ongoing work). Iist AIOOL Workshop on Abstract Interpretation of Object-
Oriented Programs2005.

K. Zee, P. Lam, V. Kuncak, and M. Rinard. Combining theoigroving with static analysis for data
structure consistency. limternational Workshop on Software Verification and Vaiida (SVV 2004)
Seattle, November 2004.

