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Abstract. TheVerifying Compilerchecks the correctness of the program it com-
piles. The workhorse of such a tool is the reasoning engine, which decides validity
of formulae in a suitably chosen logic. This paper discussespossible choices for
this logic, and how to solve the resulting problems.

1 Introduction

The solution to theGrand Challengeproposed by Tony Hoare [1] is close to millions of
programmers’ daydream: a compiler that automatically detects all the bugs in the code.

More realistically, the goal is to prove or refute assertions given together with the
program. Writing assertions is common practice. It will certainly remain difficult to
write a specification that is strong enough to capture the designer’s intent, but leaving
this problem aside, just checking what we are able to specifywould be of tremendous
usefulness already.

The way these assertions are specified is intentionally leftopen; this may range from
simplisticassert() statements inserted into the code to a formulae given in a tempo-
ral logic like LTL to even another higher-level program, which serves as specification.
In general, it is to be expected that the specification or the assertions themselves will
not be strong enough to serve as inductive invariants for loop constructs. Part of the
challenge, therefore, is to strengthen the property to allow reasoning about the loops.

Manifold methods have been proposed to address this challenge. A sign for the
feasibility of the task is the success of formal verificationtools in the hardware industry.
Introduced in 1981,Model Checking[2, 3] is one of the most commonly used formal
verification technique in a commercial setting. It’s main advantage is automation. In
contrast to interactive theorem proving, no manual effort is required. However, it suffers
from the state explosion problem. In case of BDD-based symbolic model checking this
problem manifests itself in the form of unmanageably large BDDs [4].

This problem is partly addressed by a formal verification technique calledBounded
Model Checking(BMC) [5]. In BMC, the transition relation for a complex design and
its specification are jointly unwound to obtain a formula, which is then checked for
satisfiability. This process terminates when the length of the potential counterexample
exceeds its completeness threshold (i.e., is sufficiently long to ensure that no counterex-
ample exists [6]) or when the SAT procedure exceeds its time or memory bounds. BMC
has been used successfully to find subtle errors in very largeindustrial circuits [7, 8].

BMC has recently been adopted to software verification as well. CBMC [9] un-
winds sequential ANSI-C programs, flattens the resulting bit-vector logic formula, and



passes the resulting propositional formula to a SAT-solver. TCBMC, developed at IBM
Research, is a version of CBMC extended with support for threaded programs [10].
Saturn [11] and F-SOFT [12] implement similar algorithms. An application of BMC to
web applications is reported in [13].

The disadvantage of BMC is that it is typically only applicable for refutation; the
completeness threshold [6] is too large for most practical instances. The goal of theVer-
ifying Compiler, however, is verification, and not refutation. In industrial practice, the
principal method for proving properties isabstraction. Abstraction techniques reduce
the state space by mapping the set of states of the actual, concrete system to an abstract,
and smaller, set of states in a way that preserves the relevant behaviors of the system.

Predicate abstraction[14, 15] is one of the most popular and widely applied meth-
ods for systematic abstraction of programs. It abstracts data by only keeping track of
certain predicates on the data. Each predicate is represented by a Boolean variable in
the abstract program, while the original data variables areeliminated. Verification of
a software system with predicate abstraction consists of constructing and evaluating a
finite-state system that is an abstraction of the original system with respect to a set of
predicates.

The abstraction refinement process using predicate abstraction has been promoted
by the success of the SLAM project at Microsoft Research [16]. One starts with a coarse
abstraction, and if it is found that an error-trace reportedby the model checker is not
realistic, the error trace is used to refine the abstract program, and the process pro-
ceeds until no spurious error traces can be found. The actualsteps of the loop follow
theabstract-verify-refineparadigm and depend on the abstraction and refinement tech-
niques used.

The workhorse of both BMC and predicate abstraction is the reasoning engine,
which decides validity of formulae in a suitably chosen logic. This paper discusses
possible choices for this logic, and how to solve the resulting problems.

2 Decision Procedures for Program Verification

2.1 Existing Approaches

Almost all program verification engines, such as symbolic model checkers and ad-
vanced static checking tools, employ automatic theorem provers for symbolic reason-
ing. For example, the static checkers ESCJAVA [17] and BOOGIE [18] use the Sim-
plify [19] theorem prover to verify user-supplied invariants.

The SLAM [20–25] software model-checker uses ZAPATO [26] for symbolic simu-
lation of C programs. The BLAST [27] and MAGIC [28] tools use Simplify for abstrac-
tion, simulation and refinement. Other examples include theInvest [29] tool, which uses
the PVS [30] theorem prover. Further decision procedures used in program verification
are CVC-Lite [31], ICS [32] and Verifun [33].

However, the fit between the program analyzer and the theoremprover is not always
ideal. The problem is that the theorem provers are typicallygeared towards efficiency
in the mathematical theories, such as linear arithmetic over the integers. In reality, pro-
gram analyzers rarely need reasoning for unbounded integers. Linearity can also be too



limiting in some cases. Moreover, because linear arithmetic over the integers is not a
convex theory (a restriction imposed by the Nelson-Oppen and Shostak theory combina-
tion frameworks), the real numbers are often used instead. Program analyzers, however,
need reasoning for the reals even less than they do for the integers.

The program analyzers must consider a number of issues that are not easily mapped
into the logics supported by the theorem provers. These issues include pointers, pointer
arithmetic, structures, unions, and the potential relationship between these features.

In [34], we proposed the use of propositional SAT-solvers asa reasoning engine
for program verification. The astonishing progress SAT solvers made in the past few
years is given in [1] as a reason why the grand challenge is feasible today. Solvers such
as ZChaff [35] can now solve many instances with hundreds of thousands of variables
and millions of clauses. The arithmetic operators in the formula are replaced by cor-
responding circuits. The resulting net-list is converted into CNF and passed to a SAT
solver. This allows supporting all operators as defined in the ANSI-C standard.

In [36], we report experimental results that quantify the impact of replacing ZAP-
ATO, a decision procedure for integers, with Cogent, a decisionprocedure built using
a SAT solver: The increased precision of Cogent improves theperformance of SLAM ,
while the support for bit-level operators resulted in the discovery of a previously un-
known bug in a Windows device driver.

This approach is currently state-of-the-art for deciding validity of formulae in a
logic supporting bit-vector operators. It is implemented by Cogent and CVC-Lite, while
ICS is still using BDDs to reason about this logic.

2.2 Future Work

The existing approach is clearly not satisfying:

1. First of all, the word-level information about the variables is lost when splitting into
bits. A solver exploiting this structure is highly desirable. Word-level SAT-solvers
(sometimes called circuit-level SAT solvers) attempt to address this problems, but
provide only a very small subset of the required logic. In order to compute predicate
images or to perform a fixed-point computation, we need to solve a quantification
(or projection) problem, not a decision problem, which is typically considered to be
harder than the decision problem. We describe a proof-basedapproach to perform
an approximative existential quantification of formulae inbit-vector logic at the
word-level in section 3.

2. Second, the logic supported by this approach is still not sufficient. A major goal
of a Verifying Compileris to show pointer-safety. In the presence of dynamic data
structures, this requires support for a logic such as separation logic [37]. The combi-
nation of such a non-standard logic with bit-vector logic ina joint efficient decision
procedure is a challenging problem.

3. Programs involving complex data structures will certainly require formulae that
use quantifiers, e.g., to quantify over array indices. Due tothe high complexity
of these decision problems, there are currently no practical decision procedures
available. The progress solvers for QBF (quantified booleanformulae) is making is
encouraging, and promises to allow new applications just asthe progress of SAT-
solvers did.



3 Word-Level Reasoning for Bit-Vectors

3.1 Encoding Decision Problems into Propositional Logic

SAT solvers have become an integral part of all modern decision procedures. There are
two different ways to compute an encoding of a decision problemφ into propositional
logic. In both cases, the propositional partφenc of the formula is converted into CNF
first.

Definition 1. Let φ denote a formula. The set of all atoms inφ that are not Boolean
identifiers is denoted byA(φ). ThePropositional Encodingφenc of a bit-vector formula
φ is obtained by replacing all atomsa ∈ A(φ) by fresh Boolean identifierse1, . . . , eν ,
whereν = |A(φ)|. The atom replaced byei is denoted byA(ei).

As an example, the propositional encoding ofφ = (x = y)∧((a⊕b = c)∨(x 6= y))
is e1 ∧ (e2 ∨ ¬e1), andA(φ) = {x = y, a⊕ b = c}.

We denote the vector of the variablesE = {e1, . . . , eν} by e. Furthermore, let
ψa(e) denote the atoma with polarityp:

ψa(e) :=

{

a : p
¬a : otherwise

(1)

Lazy vs. Eager EncodingsLinear-time algorithms for computing CNF forφenc are
well-known [38]. All decision procedures transformφenc into CNF this way. The algo-
rithms differ in how the non-propositional part is handled.

The vector of variablese : A(φ) −→ {true, false} as defined above denotes a
truth assignment to the atoms inφ. Let ΨA(φ)(e) denote the conjunction of the atoms
ai ∈ A(φ) where theai are in the polarity given byψ(ai):

ΨA(φ)(e) :=

ν
∧

i=1

ψai
(ei) (2)

An Eager Encodingconsiders all possible truth assignmentse before invoking the
SAT solver, and computes a Boolean constraintφE(e) such that

φE(e) ⇐⇒ ΨA(φ)(e) (3)

The number of cases considered while buildingφE can often be dramatically re-
duced by exploiting the polarity information ofa, i.e., whethera appears in negated
form or without negation in the negation normal form (NNF) ofφ. After computing
φE , φE is conjoined withφenc, and passed to a SAT solver. A prominent example of a
decision procedure implemented using an eager encoding is UCLID [39].

A Lazy Encodingmeans that a series of encodingsφ1
L, φ

2
L and so on withφ =⇒

φi
L is built. Most tools implementing a lazy encoding start off with φ1

L = φenc. In
each iteration,φi

L is passed to the SAT solver. If the SAT solver determinesφi
L to be

unsatisfiable, so isφ. If the SAT solver determinesφi
L to be satisfiable, it also provides

a satisfying assignment, and thus, an assignmentei to A(φ).



The algorithm proceeds by checking ifΨAφ(ei) is satisfiable. If so,φ is satisfiable,
and the algorithm terminates. If not so, a subset of the atomsA′ ⊆ A(φ) is determined,
which is already unsatisfiable underei. The algorithm builds ablocking clauseb, which
prohibits this truth assignment toA′. The next encodingφi+1

L is φi
L ∧ b. Since the

formula becomes only stronger, the algorithm can be tightlyintegrated into one SAT-
solver run, which preserves the learning done in prior iterations.

Among others, CVC-Lite [31] implements a lazy encoding of integer linear arith-
metic. The decision problem for the conjunctionΨAφ(ei) is solved using the Omega
test, which is described in the next section.

3.2 Encodings from Proofs

A proof is a sequence of transformations of facts. The transformations follow specific
rules, i.e., proof rules, which are usually derived from an axiomatization of the logic at
hand. A proof of a formulaφ in a particular logic can be used to obtain another formula
φP in propositional logic that is valid if and only if the original formula is valid, i.e.,
φ ⇐⇒ φP . Let F denote the set of facts used in the proof.

Given a proof ofφ, a propositional encoding ofφ can be obtained as follows:

1. Assign a fresh propositional variablevf to each factf ∈ F that occurs anywhere
in the proof.

2. For each proof stepi, generate a constraintci that captures the dependencies be-
tween the facts. As an example, the derivation

A,B

C

with variablesvA, vB, vC for the factsA,B, andC generates the constraint(vA ∧
vB) −→ vC .

3. The formulaφP is obtained by conjoining the constraints:

φP :=
∧

i

ci

However, the generation of such the proof is often difficult to begin with. In particu-
lar, it often suffers from a blowup due to case-splitting caused by the Boolean structure
present inφ. This is addressed by a technique introduced by Strichman in[40]. His pa-
per describes an eager encoding of linear arithmetic on bothreal numbers and integers
into propositional logic using the Fourier-Motzkin transformation for the reals and the
Omega-Test [41] for the integers.

The idea of [40] is applicable to any proof-generating decision-procedure:

– All atomsA(φ) are passed to the provercompletely disregarding the Boolean struc-
ture of φ, i.e., as if they were conjoined.

– For factsf that are also atoms assignvf := ef .
– The prover must be modified to obtainall possible proofs, i.e., must not terminate

even if the empty clause is resolved.



Since the formula that is passed to the prover does not contain any propositional
structure, obtaining a proof is considerably simplified. The formulaφP obtained from
the proof as described above is then conjoined with the propositional encodingφenc.
The conjunction of both is equi-satisfiable withφ. AsφP ∧φenc is purely propositional,
it can be solved by an efficient propositional SAT-solver.

3.3 Existential Abstraction

Let S denote the set of concrete states, andR(x, x′) denote the concrete transition
relation. As an example, consider the basic block

i++;
j=i;

We usex.v to denote the value of the variablev in statex. The transition relation
corresponding to this basic block is thenx′.i = x.i+ 1 ∧ x′.j = x′.i.

LetΠ = {π1, . . . , πn} denote the set of predicates. The abstraction functionα(x)
maps a concrete statex ∈ S to an abstract statêx ∈ {true, false}n:

α(x) := (π1(x), . . . , πn(x))

When computing an existential abstraction, the abstract model can make a transition
from an abstract statêx to x̂′ iff there is a transition fromx to x′ in the concrete model
andx is abstracted tôx andx′ is abstracted tôx′. Formally, the abstract transition
relation is denoted bŷR.

R̂ := {(x̂, x̂′) | ∃x, x′ ∈ S : R(x, x′) ∧ α(x) = x̂ ∧ α(x′) = x̂′} (4)

R̂ is also called the image of the predicatesΠ overR. The formula on the right
hand side can be transformed into CNF by replacing the bit-vector arithmetic operators
in R andα by arithmetic circuits. Due to the quantification over the abstract states this
corresponds to an all-SAT instance. Solving such instancesis usually exponential inn.

As an alternative,̂R can be computed using a proof. The facts given to the prover
are:

1. All the predicates evaluated over statex, i.e.,πi(x),
2. all the predicates evaluated over statex′, i.e.,πi(x

′),
3. the atoms in transition relationR(x, x′).

We then obtainφB as described in section 3.2. BothφB andφenc contain fresh
propositional variables for the atomsA(R) inR, for the predicatesΠ overx andx′, and
for the factsf ∈ F found during the derivation. LetVR denote the set of propositional
variables corresponding to atoms inR that are not predicates, and letVF denote the set
of propositional variables corresponding to factsf ∈ F that are not predicates.

The propositional variables that do not correspond to predicates are quantified exis-
tentially to obtain the predicate image. LetvR denote the vector of variables inVR, let



vF denote the vector of variables inVF , and letµR = |VR| andµF = |VF | denote the
number of such variables.

R̂ := {(x̂, x̂′) | ∃vR ∈ {0, 1}µR, vF ∈ {0, 1}µF :
φenc(x̂, x̂

′, vR) ∧ φP (x̂, x̂′, vF )}
(5)

Thus, we replaced the existential quantification of concrete program variablesx, x′ ∈
S2 by an existential quantification ofµR + µF Boolean variables. The authors of [42]
report experiments in which this quantification is actuallyperformed by means of either
BDDs or the SAT-engine of [34].

The authors of [43] use BDDs to obtain all cubes over the variables inVF , and then
enumerate these cubes. This operation is again worst-case exponential.

As motivated above, reasoning for integers is a bad fit for system-level software,
and basically useless to prove properties of hardware. We would therefore like a proof-
based method for a bit-vector logic. The main challenge is that any axiomatization for
a reasonably rich logic permits way too many ways of proving the same fact, an the
procedure as described above relies on enumeratingall proofs.

We therefore propose to sacrifice precision in order to be able to reason about bit-
vectors, and compute an over-approximation ofR̂. This is a commonly applied tech-
nique, e.g., used by SLAM and BLAST. If this over-approximation results in a spurious
transition, it can be refined by any of the existing refinementmethods, e.g., based on
UNSAT cores as in [44] or based on interpolants as in [45].

One trivial way to obtain an inexpensive over-approximation of R̂ is, e.g., bounding
the depth of proofs. Future research could, for example, focus on better proof-guiding
heuristics.

ExampleAssume we have, among others, the following derivation rules:

(a|b)&b == b (6)
b&c == 0

(a|b)&c == a&c
(7)

The predicates we consider areπ1 == (x&1 = 0) andπ2 == (x&2 = 0), and the
statement to be executed isx|=2;.

The facts passed to the prover arex&1 = 0, x&2 = 0, x′&1 = 0, x′&2 = 0, and
x′ = x|2. Figure 1 shows a derivation on the left hand side and on the right hand side the
same derivation tree in which the atoms are replaced by theirpropositional variables.
The derivation results in the constraint(π′

2 −→ v1) ∧ (v1 −→ F), which is equivalent
to¬π′

2. Figure 2 shows a derivation that ends in an existing atomπ1 rather thanF. The
constraint generated is equivalent toπ′

1 −→ π1.

4 Conclusion

Program verification engines rely on decision procedures. However, despite of many
years of research in this area, the available decision procedures are not yet geared to-
wards program analysis. Program analysis requires a logic with many features com-
monly not found in today’s decision procedures, such as bit-vector operators, and ways
to handle structs, unions, and pointers, e.g., separation logic.
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x′&2 = 0 x′ = x|2

(x|2)&2 = 0 (x|2)&2 = 2

Rule 6

F

π
′

2
T

v1 T

T

Fig. 1. Derivation of constraints forπ′
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x′ = x|2x′&1 = 0

(x|2)&1 = 0 (x|2)&1 = x&1

Rule 7

x&1 = 0 π1

π
′

1
T

v2 T

T

Fig. 2. Derivation of constraints forπ′

1

The current state-of-the-art for deciding bit-vector logic is an ad-hoc approach using
propositional SAT-solvers. Efficient Decision proceduresthat support a logic as needed
for program analysis is an open problem that has to be solved to succeed in the grand
challenge.
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