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1 Introduction

Abstract model checking has been studied as a promising technique for applying
various model checking methods to infinite state systems. Graph transformation
systems [11], which can model many distributed and concurrent algorithms, are
examples of such infinite systems.

We have been studying abstraction of several kinds of link structures, which
are instances of graph transformation systems. First, we introduced abstrac-
tion of heap structures using regular expressions mainly for verifying concurrent
garbage collection algorithms [14, 15]. In this setting, each cell has a color and a
link to another cell. Since cells can be allocated dynamically during execution,
it is impossible to enumerate all the execution states of the heap. Thus we need
to use abstraction for applying finite verification methods.

The basic strategy is to abstract each cell in a heap structure in terms of reg-
ular expressions taken from a fixed finite set. Each regular expression represents
a property of a cell concerning its connectivity with other cells. For example, the
regular expression w∗g holds at a cell that can reach a gray cell via white cells,
where w is the label of a white cell and g is that of a gray cell.

Similarly, one can use branching-time temporal logic formulas in place of reg-
ular expressions [16], where temporal operators are used for describing spatial
relationship. For example, the temporal formula E(w until g) in CTL (compu-
tation tree logic) also represents a cell that can reach a gray cell via white cells.
In [16], we defined abstraction of elementary graph transformation rules.

Some applications require to mention the inverse direction of links as well as
the forward direction. Such situations can be naturally expressed by using inverse
modalities in temporal logics. So we proposed the use of two-way CTL (2CTL) for
abstraction and applied it to analysis of synchronous and asynchronous cellular
automata [8]. In contrast to general graph transformation system, they do not
allow to change the connectivity of cells, but the label associated to each cell
can be changed according to a given rewrite rules. Representation of a rewrite
rule also refers to 2CTL formulas.



To enable analysis be done fully automatically, satisfiability checking of 2CTL
formulas plays a central role. For example, adjacency of abstract cells can be
derived by checking satisfiability of a 2CTL formula, and if it is shown that they
cannot be adjacent, the abstract link between them is deleted.

Another kind of well-known infinite system is that of timed or hybrid sys-
tems, whose state contains dense time values. Abstraction methods using a finite
set of partitions of time values called regions or zones, are widely known. We
proposed timed multiset rewriting systems as a framework that subsumes both
timed automata [1] and timed Petri nets [4]. Multiset rewriting can be naturally
extended to graph transformation by introducing links between elements of a
multiset.

Our current challenge is to extend the abstraction method using temporal
logic so that we can provide a uniform framework that works on more general
graph transformation systems. We are also planning its timed extension by at-
taching clock values to each node of a graph.

The rest of the paper is organized as follows. Section 2 compares our frame-
work with related work. Section 3 describes why we use temporal logic for ab-
straction of graph transformation systems. Section 4 shows possible case studies
that we are planning. Implementation status of related tools are described in
Sect. 5. Section 6 mentions some aspects of formal verification of the algorithms
used in the framework, and Sect. 7 summarizes the paper.

2 Related Work

Separation logic [10] is an extension of Hoare logic, and deals with spatial prop-
erties of shared mutable data structures using assertions about disjoint parts
of the heap. Though it can reason about data structures that have particular
shapes such as lists, basic properties of these structures have to be prepared.

“Shape analysis” methods [5, 12] in abstract interpretation also concern rep-
resentation of spatial properties of pointer structures. Among them, Sagiv et
al.’s work [12] on the TVLA system (Three-Valued-Logic Analyzer) is closely
related to ours. One of the differences is that they use logical structures for
2-valued first-order logic for representing the concrete space, whereas ours use
Kripke structures. What is more crucial is that ours uses decidable temporal
logic. Thus we can use satisfiability checking as a tool to promote automation in
analysis. We also make some extensions to temporal logic so that it can suit ab-
straction of graph transformation systems. Refer to the next section for details.

3 Why Temporal Logic?

The use of temporal logic for abstraction is the most important feature of our
framework. In this section, we explain why we use temporal logic, and what
kinds of extensions to temporal logic we have made or we are going to make in
order to apply it to abstraction of graph transformation systems.



A concrete graph can be regarded as a Kripke structure M = (M, {Ra}, λ)
where M is a set of concrete nodes, {Ra} is a collection of labeled relations on
M such that sRat if and only if there is a link labeled a from s to t, and λ is a
function that maps a label to the set of the associated nodes. As already men-
tioned, the key idea is to use temporal modalities for the purpose of describing
spatial properties of nodes. For example, if a node s points to another node t
by a link labeled a and property p holds at the node t (i.e., sRat and t ∈ λ(p)),
then EXap holds at the node s (i.e., M, s |= EXap).

An abstracted node is characterized by truth values of some temporal for-
mulas. It represents possibly multiple concrete nodes where each formula has
the corresponding truth value. In order for abstract nodes to have only a finite
number of variations, we first fix a finite set F of temporal formulas in advance.
Then each abstract node is determined by C ⊆ F so that

∧{φ | φ ∈ C}∧∧{¬φ |
φ ∈ F \ C} (denoted by φC) is satisfied in the corresponding concrete nodes.
That is, a concrete node s in a concrete graph M is represented by an abstract
node C ⊆ F if and only if M, s |= φC holds. Since F is a finite set, the number
of abstract nodes is bounded by 2|F |.

The use of decidable temporal logic enables us to use satisfiability checking
as a tool for automated analysis. In general more expressive logics require higher
computational complexity. So we may use a subclass of decidable temporal logic
such that its satisfiability checking is feasible, or we may do approximate checking
that does not violate conservativeness of abstraction.

CTL is a kind of branching-time temporal logic that has been well studied
and widely used especially for model checking. However, in order to use it for
analysis using abstraction, we sometimes need more expressibility than that of
the bare CTL. In the rest of this section, we describe what kinds of extensions
we have made as well as our plan of future extensions.

Two-Way Modality and Satisfiability When we describe spatial proper-
ties, we often need to mention not only the modality of the forward direction
but also that of the inverse direction. In the example of 1-dimensional cellular
automata [8], an abstract cell has to have information on the colors of its left
and right neighbors. In that case, it is natural to use inverse modality as well as
forward one.

For modality a, the inverse modality of a is denoted as a and thus a = a. In
this two-way setting, we define abstract links between abstract nodes as follows:
for abstract nodes C, D and modality a, there is an abstract link labeled a from
C to D if and only if both φC ∧ EXaφD and φD ∧ EXaφC are satisfiable.

Abstraction of the concrete graph structure is represented as an abstract
graph, which consists of abstract nodes and abstract links between them. In
this paper, to simplify the explanation, we focus on the framework in which an
abstract graph is fully induced from a set of abstract nodes, so we denote an
abstract graph by the corresponding set G ⊆ 2F of abstract nodes. Satisfiability
checking plays a central role in automated generation of the abstract graph as
above.



An abstract graph G is said to be sound with respect to a concrete graph
M = (M, {Ra}, λ) if ∀s ∈ M. ∃C ∈ G. M, s |= φC holds. Because C ⊆ F
satisfying this condition is uniquely determined from s if it exists, we may write
such C as α(s) for s ∈ M . If G is sound with respect to M, then there is an
abstract link labeled a from α(s) to α(t) whenever sRat holds.

As we mentioned, an abstract node is determined by truth values of user-
selected two-way temporal formulas that represent characteristic properties of
concrete nodes. This method can be regarded as predicate abstraction by two-
way temporal formulas. Sagiv et al. [12] proposed parametric framework for
shape analysis using predicate abstraction by user-defined predicates on 3-valued
logic. Such predicates include not only “pointed to by the variable x” but also
“reachable from the variable x”. The latter type of predicate is called an “instru-
mentation predicate”, which does not directly appear in the target program but
plays an important role in static analysis. How these predicates change according
to a program execution step is specified by “predicate update formulas”, and au-
tomatic generation of those for instrumentation predicates is a difficult problem
especially when transitive closure of a predicate is included [9]. Our approach is
to use temporal formulas for representing such instrumentation predicates, and
to calculate of the weakest precondition of a program execution step. Details are
described in Sect. 5.

Nominal We also use hybrid temporal logic, which differs from the ordinary
temporal logic in that it has two kinds of atomic formulas. One is that of ordi-
nary propositional constants, and atomic formulas of the other kind are called
nominals. A nominal has the same role as a propositional constant syntactically,
but they are different semantically: in a Kripke structure M = (M,R, λ) for
hybrid temporal logic, the domain of λ is the union of the set of propositional
constants and the set of nominals, and λ(x) is required to be a singleton for a
nominal x. That is, a nominal x specifies a unique node in a Kripke structure.

Introduction of nominals increases the power of describing properties of a
graph. For example consider the property “node n is in a loop”. It can be para-
phrased as “n is reachable from n by following the arrows (more than once),”
and is therefore expressible as “x→ EXEFx” if x is a nominal that specifies n. If
x were just a propositional constant, the formula would not express the property.

In [12], abstract heap structures contain two kinds of nodes: summary nodes
and non-summary nodes. A summary node represents “more than one concrete
node”, and a non-summary one represents “exactly one concrete node.” The dis-
tinction of these kinds of abstract nodes plays an important role in expressivity
and accuracy of abstraction. In our framework, the former kind of abstract node
corresponds to a set of usual formulas, while the latter kind corresponds to a
set of formulas containing a nominal. Since we cannot express the latter kind of
abstract node without nominals, they are essential for doing analysis as in [12].

Shape Analysis is Tableau We use a tableau method for checking satisfiability
of a given two-way temporal formula. We construct a tableau by repeatedly



removing inconsistent tableau nodes starting from all of the possible ones. The
tableau constructed in this way effectively encodes all models that make the
given formula satisfiable.

Tableau construction and shape analysis using abstract graphs are closely
related as follows. For an abstract graph G, consider a formula ψG =

∧{A¬φC |
C /∈ G}, where A denotes a global modality [2] and Aφ means that φ is true at
all points in a model. Then a Kripke structure M = (M, {Ra}, λ) is a model
of ψG if and only if ∀s ∈ M. M, s |= ∧{¬φC | C /∈ G}. Suppose that M is a
model. Since ∀s ∈M. ∃C ⊆ F. M, s |= φC always holds, we have ∀s ∈M. ∃C ∈
G.M, s |= φC . This means G is sound with respect to M.

Therefore, all the concrete graphs for an abstract graph used in the shape
analysis is covered by the tableau corresponding to a particular formula con-
structed by the abstract graph. The use of decidable temporal logic and its
satisfiability checking tightly connects tableau method with shape analysis in
this sense.

Spatio-Temporal Logic Although we have used modalities in temporal logic
for the purpose of describing spatial properties, they are originally introduced for
describing temporal properties, of course. In the example of cellular automata,
connectivity of cells are not changed through temporal evolution of cells, because
a cell is not generated or destroyed. Therefore one can think of temporal change
of spatial properties of a cell such as “for a cell satisfying S, T holds until U via
temporal evolution,” where S, T , and U are spatial properties.

In general, properties of graphs to be verified involve not only spatial relations
but also temporal ones as above. So we are now trying to establish such “spatio-
temporal” logic that can describe interaction of both kinds of modalities.

In our software model checking tool TLAT described in Sect. 5, we are trying
to grasp both spatial and temporal properties of a cell in the heap. Refer to
Section 5 for the detail.

4 Case Studies

In this section, we give some case studies we are planning with our framework.
Asynchronous transformation of link structures such as that in a concurrent

garbage collection algorithm is a typical example of graph transformation. In the
concurrent GC environment, there are two kinds of processes, a mutator and a
collector, running concurrently. The mutator process accesses the heap to change
the link structure according to the given program. The collector process also
accesses the heap to collect unused cells without stopping the mutator process.

The key features in our framework are characterization of heap properties
using temporal logic formulas and the use of their satisfiability checking for
automation. We are planning to apply them to the shape analysis through pred-
icate abstraction and model checking [5]. It enables us to do shape analysis on
heaps by a generic abstraction algorithm using the calculation of the weakest



preconditions instead of specialized abstract interpretation algorithms. We also
mention the current status along this direction in Section 5.

Distributed algorithms over networks can also be regarded as graph trans-
formation systems. Examples include mutual exclusion, routing protocols, prop-
agation of DNS information, and leader election algorithms on mobile ad hoc
network. Timed extension is crucial for analyzing network protocols that have
the notion of timeouts.

Cellular automata are also special cases of graph transformation. The shape
of the graph does not change, but the label associated each node (cell) does.
Transition on cellular automata can be synchronous and asynchronous. The syn-
chronous transition changes the labels of all the nodes simultaneously. The asyn-
chronous one changes the label of one node at a time. The dining philosopher
problem taken in [8] is an example of asynchronous cellular automata. How ab-
straction by temporal logic can be used in the deadlock analysis of this problem
is shown.

5 Tools

Some tools related to our framework have been implemented or under construc-
tion.

Satisfiability Checker As we mentioned, satisfiability checking plays an im-
portant role in abstraction under our framework. Although a decidable algorithm
is already proposed for two-way modal µ-calculus [20], and for hybrid two-way
modal µ-calculus [13], their straightforward implementations cost high compu-
tational complexity because of the emptiness problem on infinite tree automata.
Moreover, the actual implementation is not reported to the best of our knowl-
edge.

We showed that satisfiability of some subclasses of two-way modal µ-calculus
can be effectively checked using a tableau method that is implemented by itera-
tive computation over BDDs [3]. We first implemented a satisfiability checker for
two-way CTL [17] with this method. Then it is also applied to alternation-free
two-way modal µ-calculus [19] by adding some extra information to the tableau.
Overview of this method is explained below.

A simple decision procedure for satisfiability checking in (one-way) CTL,
which is a subsystem of the two-way modal µ-calculus, is well-known [6]. By ex-
panding modal formulas (for example, formula EFϕ is expanded to ϕ∨EXEFϕ),
any formula can be regarded as a boolean combination of propositional constants
and formulas in the form of EXϕ or AXϕ. We consider a tableau consisting of
nodes each of which is a subset of the set of propositional constants and formulas
in the form of EXϕ and AXϕ. We regard each formula that belongs to a node is
“true” at the node. Starting with the full tableau consisting of all nodes, we re-
peatedly dispose of “inconsistent” nodes. Among the types of inconsistency, the
most important one is the type concerning “eventuality.” An example situation
is that the formula EFϕ is “true” at a node but no node where ϕ is “true” can



Start:
y:=nil;
Loop:
while(x!=NULL) {
t:=y; y:=x;
x:=x.f; y.f:=t;

}
End:

(0,0); Loop(0,1); Loop

(1,0); Loop(1,1); Loop

(0,0); End(0,1); End

(1,0); End(1,1); End

(0,0); Loop(0,1); Loop

(1,0); Loop(1,1); Loop

(0,0); End(0,1); End
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Fig. 1. Abstraction in TLAT

be reached from there. In the case of (one-way) CTL, this type of inconsistency
can be judged relatively easily. However, in the case of two-way logic, the situa-
tion is not so simple because of additional inconsistency induced by the inverse
modality. As for two-way CTL, an additional check between adjacent tableau
nodes suffices. As for alternation-free two-way µ-calculus, we introduced some
relation between formulas in tableau nodes. Details are found in [19].

We are also developing a hybrid version (i.e., with nominal) of satisfiability
checker using the same method.

TLAT We are developing a tool that enables software model checking based on
the abstraction method described in the paper, which we call Temporal Logic
Abstraction Tool (TLAT). TLAT handles heap structures, called pointer struc-
tures, consisting of a finite set of nodes and a finite set of variables. A node
stores a value (an element of some fixed finite set) and has pointers with names
where each pointer points to a node. A variable also points to a node. And we
have introduced a small language called PML (Pointer Manipulation Language),
which has a minimum set of assignment statements and control statements to
describe operations on pointer structures. Figure 1 shows an example of a pro-
gram P in PML, which reverses a given “list” headed by a node pointed to by
variable x at label Start and the resulting list is headed by a node pointed to by
variable y at label End. A PML program such as P induces a transition system
C = (C,→), where an element of C is a pair of a pointer structure and a value
of the program counter.

We consider hybrid two-way CTL with values (stored in nodes) as propo-
sitional constants and variables as nominals. We also consider a pair (v, ϕ) of
a program variable and a formula of the hybrid two-way CTL and call it a p-
formula. A p-formula (v, ϕ) is also denoted by v ⊃ ϕ, and can be considered



as a predicate on pointer structures: it holds on pointer structure S if the node
pointed to by v in S satisfies ϕ. For example, p-formula x ⊃ EFfu expresses
that the node pointed to by variable x reaches the node pointed to by u by
following pointers labeled f . We also introduce notation “@l” meaning that the
current execution point is at label l. In TLAT a specification of a program is
expressed by an LTL formula with p-formulas and “@l” notations as atomic
formulas. For example the specification “Any node in the list headed by the
node pointed to by variable x at label Start is contained in the list headed by
the node pointed to by variable y at label End” can be expressed by the LTL
formula �(@Start∧ x ⊃ EFu→ �(@End → y ⊃ EFu)).

It is not possible to verify such a specification by model-checking the transi-
tion system C since it is obviously infinite. TLAT constructs a finite transition
system A = (A,→) which is a sound abstraction with respect to LTL formulas in
the sense that if an LTL formula holds in A it is guaranteed that it also holds in
C. Let Q1, . . . , Qn be p-formulas appearing in the specification plus p-formulas
given by the user as hints for abstraction. An element of A is a pair of a sequence
of 0 and 1 of length n and a value pc of the program counter. For a = (a1, . . . , an)
where (a, pc) ∈ A, we denote by Q(a) the conjunction of Qj (if aj = 1) or ¬Qj

(if aj = 0). Following the spirit of “shape analysis is tableau” in Sect. 3, a heap
structure at the program counter pc is abstracted to (a, pc) ∈ A if and only if it
is encoded in the tableau for the formula

∧{AQi | ai = 1} ∧ ∧{A¬Qi | ai = 0}.
If an assignment statement s is in the location of pc, whether (a, pc) →

(a′, pc+1) holds or not can be decided by judging whether Q(a)∧wp(s,Q(a′)) is
satisfiable or not, where wp(s, T ) is the weakest precondition of T with respect
to s and can be calculated as in [18]. TLAT performs model checking with
the specification against A. If the result is positive, the verification succeeds.
Otherwise the user investigates if the counterexample obtained as the result of
the model-check corresponds to a real counterexample in C. If not, a new set of
p-formulas is to be added to Q1, . . . , Qn to get a more precise abstract system.

Region Analysis Tool As we already mentioned, we are planning to add clock
values to nodes. Traditionally, abstraction of clock values is done by dividing the
infinite value space into finite partitions. Because our framework abstracts sev-
eral concrete nodes into an abstract node, we need to consider an abstract clock
that represents several concrete clocks whose values are in a certain interval.

We are also planning to develop a checker that does region analysis on ab-
stract clocks. A rough algorithm has been made and we are now trying to im-
plement and evaluate the checker.

6 Formal Verification

Verification algorithms themselves can also be a target of verification. It increases
the reliability and confidence of their implementation. In particular, graph al-
gorithms are extensively used in verification, and actually both the satisfiability
checking algorithm for two-way temporal logics and the abstract model checking



of graph transformation systems are instances of graph algorithms. Our group
has some experiences of formal verification on graphs [21, 22] using a theorem
proving environment, so we are also planning formal verification of graph algo-
rithms used in our framework. In particular, the tableau method used in the
satisfiability checker is already fairly complicated and it deserves formal verifi-
cation.

Besides ensuring correctness, a merit of formal verification is that it leads to
better understanding of the target algorithm. Thus we expect that we can grasp
the essence of the algorithm and understand both the possibility of extension
and its limitation.

7 Summary

We described some results and ongoing projects on abstraction and verification of
graph transformation systems by temporal logic. Brief sketch of the framework,
possible case studies, related tools, and some aspects of formal verification are
presented.
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