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Abstract. NASA is developing increasingly complex missions to conduct new
science and exploration. Missions are increasingly turning to multi-spacecraft to
provide multiple simultaneous views of phenomena, and to search more of the
solar system in less time. Swarms of intelligent autonomous spacecraft, involv-
ing complex behaviors and interactions, are being proposed to accomplish the
goals of these new missions. The emergent properties of swarms make these mis-
sions powerful, but simultaneously far more difficult to design, and to verify that
the proper behaviors will emerge. In verifying the desired behavior of swarms of
intelligent interacting agents, the two significant sources of difficulty are the ex-
ponential growth of interactions and the emergent behaviors of the swarm. NASA
Goddard Space Flight Center (GSFC) is currently involved in two projects that
aim to address these sources of difficulty. We describe the work being conducted
by NASA GSFC to develop a formal method specifically for swarm technologies.
We also describe the use of requirements-based programming in the development
of these missions, which, it is believed, will greatly reduce development lead-
times and avoid many of the problems associated with such complex systems.

1 Introduction

It is planned that future NASA missions will exploit exciting new paradigms for space
exploration [22, 23]. To perform new science and exploration, traditional missions, re-
liant upon the use of a single large spacecraft, are being replaced with missions that
will involve several smaller spacecraft. These new missions will behave as a “system of
systems,” operating in collaboration, analogous to swarms in nature [11].

This offers several advantages: the ability to send spacecraft to explore regions of
space where traditional craft simply would be impractical, greater redundancy and, con-
sequently, greater protection of assets, and reduced costs and risk, to name but a few.



Planned missions entail the use of several unmanned autonomous vehicles (UAVs) fly-
ing approximately one meter above the surface of Mars, which will cover as much of
the surface of Mars in approximately three seconds as the now famous Mars rovers did
in their entire time on the planet; the use of armies of tetrahedral walkers to explore the
Mars and Lunar surface; constellations of satellites flying in formation; and, the use of
miniaturized pico-class spacecraft to explore the asteroid belt, where heretofore it was
impossible to send exploration craft without high likelihood of loss [18].

However, these new approaches to exploration missions simultaneously pose many
challenges. The missions will be unmanned and necessarily highly autonomous. They
will also exhibit all of the properties of autonomic systems, being self-protecting, self-
healing, self-configuring, and self-optimizing [12]. Many of these missions will be sent
to parts of the solar system where manned missions are simply not possible, and to
where the round-trip delay for communications to spacecraft exceeds 40 minutes, mean-
ing that the decisions on responses to problems and undesirable situations must be made
in situ rather than from ground control on Earth. The degree of autonomy that such mis-
sions will possess would require a prohibitive amount of testing. Furthermore, learning
and continual improvements in performance will mean that emergent behavior patterns
simply cannot be fully predicted [19].

2 Formal Approaches to Swarm Technologies

These missions are orders of magnitudes more complex than the traditional missions
and verifying these new types of missions will be impossible using current techniques.
New verification methods will be needed to address the added complexity resulting
from the nondeterminate nature of these systems as well as the emergent behavior of
swarms. To support the level of assurance that NASA missions require, formal specifi-
cation techniques and formal verification will play vital roles in the future development
of NASA space exploration missions. The role of formal methods will be in the specifi-
cation and analysis of forthcoming missions, enabling software assurance and proof of
correctness of the behavior of the swarm, whether or not this behavior is emergent (as
a result of composing a number of interacting entities, producing behavior that was not
foreseen). Formal models derived may also be used as the basis for automating the gen-
eration of much of the code for the mission to further reduce the probability of adding
new errors during coding.

To address the challenge in verifying the above missions a NASA project, For-
mal Approaches to Swarm Technology or FAST, is investigating the requirements of
appropriate formal methods for use in such missions, and is beginning to apply these
techniques to specifying and verifying parts of a future NASA swarm-based mission.

2.1 FAST

As part of the FAST project, the planned ANTS (Autonomous Nano Technology Swarm)
mission is being used as an example swarm-based mission. The ANTS sub-mission
PAM (Prospecting Asteroid Mission) will involve the launch of 1000 picoclass satel-
lites into the asteroid belt [11, 21]. Many of these will be lost on first launch, others



through collisions with asteroids and with other ANTS spacecraft. The surviving space-
craft (approximately 30% to 40%) will form subswarms under the control of a leader or
ruler. Worker spacecraft will carry individual instruments (e.g., a magnetometer, x-ray,
gamma-ray, visible/IR, neutral mass spectrometer, etc.) which will be used to collect
various types of data. Based on these data, the ruler will determine which asteroids are
worthy of further investigation. Because of distances, low bandwidth, and roundtrip de-
lays in communication with Earth, the mission will be requ ired to operate more or less
autonomously. It must also be able to recover from collisions, loss of instruments, loss
of rulers or messengers (used to facilitate communication between spacecraft and/or
with ground control), in addition to solar storms, whereby charged particles from the
Sun can damage spacecraft and/or the solar sails (panels) that they use to obtain power
from the sun.

2.2 Properties of an Appropriate Formal Method for Intelligent Swarms

An effective formal method must be able to predict the emergent behavior of 1000
agents operating as a swarm, as well as the behavior of the individual agent. Crucial to
the mission will be the ability to modify operations autonomously to reflect the chang-
ing nature of the mission. For this, the formal specification will need to be able to track
the goals of the mission as they change, and to modify the model of the Universe as
new data comes in. The formal specification will also need to allow for specification of
the decision making process to aid in the determination of which instruments will be
needed, at what location, with what goals, etc.

Most importantly, the formal specification must allow for verification, and for the
analysis of various properties and conditions within the evolving system. The ANTS
mission details are still being determined and are constantly changing as more research
is conducted. The formal specification technique employed must be sufficiently flexible
to allow for efficient changes and re-prediction of emergent behavior.

Bearing all of this in mind, the following list summarizes the properties necessary
for effective specification and emergent behavior prediction of the ANTS swarm and
other swarm-based missions, and looks to existing formal methods to provide some of
the desired properties [10].

Process representation: Processes can be specified using the various manifestations
of transition functions.

Reasoning: Other forms of possibly non-standard logics may need to be employed to
allow for intelligent reasoning with uncertain and possibly conflicting information.

Choosing Action Alternatives: A means of expressing probabilities and frequencies
of events (as in WSCCS) is most beneficial in choosing between different enabled
actions. A modified version of the WSCCS ability may be used to supply an algebra
for choosing between possible actions.

Asynchronous messaging: Asynchronous messaging will need to be supported, as
this is the most common type of messaging in swarm applications. This is not
a significant problem as most synchronous messaging is implemented via asyn-
chronous “handshakes”. There are variants of CSP and other process algebras that
support asynchronous messaging, either by having all processes be receptive (as in
Receptive Process Theory), or through infinite buffering as in ACSP.



Message buffering: Message buffering may be needed due to the possibly asynchronous
nature of messaging between members of the swarm. Several asynchronous vari-
ants of CSP achieve this through infinite buffering.

Concurrent agent states for each spacecraft: This requirement is well supported by
available process algebras.

Communication protocols between agents: Available process algebras are highly ef-
fective in this area.

Adaptability to programming: Any formal specification languages that are devel-
oped will need to keep in mind the ease of converting the formal specification to
program code and as input to model checkers.

Determining whether goals have been met: The goals of each spacecraft are con-
stantly under review. We will need to be able to specify a method by which the
spacecraft will know when the goals have been met. A modification to X-Machines
may be able to solve this since the goals could be tracked using X-Machines (ef-
fectively finite state machines with memory).

Method for determining new goals: Once goals are met, new goals must be formed.
We need to be able to specify a method for forming these goals.

Model checking: Model checking will help to avoid semantic inconsistencies in the
specifications. Notations employed will need to be suitable for use as input to a
model checker.

Tracking Models: X-Machines have the ability to track the universe model in memory
but we need a more robust way to detail what the model is, how it is created, and
how it is modified.

Associating agent actions with priorities and frequencies: A suitable formal method
requires a means of expressing the probability of certain actions being enabled, and
the frequency with which this will occur.

Predicting emergent behavior: Current approaches are not robust enough for the pur-
pose of predicting individual and swarm emergent behavior and will need to be
enhanced by greater use of Probability, Markov Chains, and/or Chaos Theory.

3 An Integrated Formal Method

The requirements detailed above point to the need to employ multiple formal methods in
order to provide both a sufficiently expressive specification notation (that can deal with
concurrency, real time constraints, data manipulation, goal oriented operation, etc.) and
to facilitate verification.

The FAST project has surveyed various formal methods examining them for appli-
cation to swarm technologies, and more generally “systems of systems” [20]. Various
formal specification notations have been applied to parts of the ANTS mission (such as
it currently stands, realizing that much of it will change before its launch) to provide
feedback on the appropriateness of various approaches.

The project has concluded, unsurprisingly, that no single formal method will be
appropriate for dealing with such a complex mission, and has consequently been con-
centrating on blending together various notations to provide a sufficiently expressive
notation [10]. Future work on the project will include developing support tools for the
integrated notation, and developing verification techniques for swarm-based missions.



4 Formal Requirements-Based Programming

Requirements-Based Programming (RBP) has been advocated [4, 5] as a viable means
of developing complex evolving systems. The idea that it embodies is that requirements
can be systematically and mechanically transformed to executable code.

This may seem to be an obvious goal in the engineering of computer-based sys-
tems, but requirements-based programming does in fact go a step further than cur-
rent development methods. System development, typically, assumes the existence of a
model of reality, called a design (more correctly, a design specification), from which an
implementation will be derived [8]. This model must itself be derived from the sys-
tem requirements, but there is a large ‘gap’ in going from requirements to design.
Requirements-Based Programming seeks to eliminate this ‘gap’ by ensuring that the
ultimate implementation can be traced fully back to the actual requirements. NASA’s
experience has been that emphasizing sufficient effort at the requirements phase of de-
velopment can significantly reduce cost overruns later [2]. RBP promises a significant
payoff for increasing effort at the requirements phase by reducing the level of effort in
subsequent verification.

R2D2C (Requirements-to-Design-to-Code) is a NASA patent pending approach to
the engineering of complex computer systems, where the need for correctness of the
system, with respect to its requirements, is significantly high [7, 9]. In this category, we
include NASA mission software, most of which exhibits both autonomous and auto-
nomic properties, and must continue to do so in order to achieve survivability in harsh
environments.

4.1 R2D2C

In the R2D2C approach, engineers (or others) may write requirements as scenarios in
constrained (domain-specific) natural language, or in a range of other notations (includ-
ing UML use cases). These will be used to derive a formal model that is guaranteed to
be equivalent to the requirements stated at the outset, and which will subsequently be
used as a basis for code generation. The formal model can be expressed using a variety
of formal notations. Currently we are using CSP, Hoare’s language of Communicating
Sequential Processes [13, 14], which is suitable for various types of analysis and inves-
tigation, and as the basis for fully formal implementations as well as automated test
case generation, etc.

R2D2C is unique in that it allows for full formal development from the outset, and
maintains mathematical soundness through all phases of the development process, from
requirements through to automatic code generation. The approach may also be used for
reverse engineering, that is, in retrieving models and formal specifications from existing
code (Figure 2). The method can also be used to “paraphrase” (in natural language, etc.)
formal descriptions of existing systems.

In addition, the approach is not limited to generating executable code. It may also be
used to generate business processes and procedures, and we have been experimenting
(successfully) with using a rudimentary prototype to generate instructions for robotic
devices to be used on the Hubble Robotic Servicing Mission (HRSM) [16]. We are also
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Fig. 1. The R2D2C approach and current status of the prototype.

experimenting with using it as a basis for an expert system verification tool, and as a
means of capturing expert knowledge for expert systems [17].

4.2 Technical Approach

The R2D2C approach involves a number of phases, which are reflected in the system
architecture described in Figure 1. The following describes each of these phases.

D1 Scenarios Capture: Engineers, end users, and others write scenarios describing
intended system operation. The input scenarios may be represented in a constrained
natural language using a syntax-directed editor, or may be represented in other
textual or graphical forms.

D2 Traces Generation: Traces and sequences of atomic events are derived from the
scenarios defined in D1.

D3 Model Inference: A formal model, or formal specification, expressed in CSP is
inferred by an automatic theorem prover – in this case, ACL2 [15] – using the
traces derived in phase 2. A deep4 embedding of the laws of concurrency [6] in the
theorem prover gives it sufficient knowledge of concurrency and of CSP to perform
the inference. The embedding will be the topic of a future paper.

D4 Analysis: Based on the formal model, various analyses can be performed, using
currently available commercial or public domain tools, and specialized tools that
are planned for development. Because of the nature of CSP, the model may be an-
alyzed at different levels of abstraction using a variety of possible implementation
environments. This will be the subject of a future paper.

D5 Code Generation: The techniques of automatic code generation from a suitable
model are reasonably well understood. The present modeling approach is suitable
for the application of existing code generation techniques, whether using a tool
specifically developed for the purpose, or existing tools such as FDR [1], or con-
verting to other notations suitable for code generation (e.g., converting CSP to B [3]
and then using the code generating capabilities of the B Toolkit).

4 “Deep” in the sense that the embedding is semantic rather than merely syntactic.
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It should be re-emphasized that the “code” that is generated may be code in a high-
level programming language, low-level instructions for (electro-) mechanical devices,
natural-language business procedures and instructions, or the like. As Figure 2 illus-
trates, the above process may also be run in reverse:

R1 Model Extraction: Using various reverse engineering techniques [24], a formal
model expressed in CSP may be extracted.

R2 Traces Generation: The theorem prover may be used to automatically generate
traces based on the laws of concurrency and the embedded knowledge of CSP.

R3 Analysis: Traces may be analyzed and used to check for various conditions, unde-
sirable situations arising, etc.

R4 Paraphrasing: A description of the system (or system components) may be re-
trieved in the desired format (natural language scenarios, UML use cases, etc.).

Paraphrasing, whereby more understandable descriptions (above and beyond exist-
ing documentation) of existing systems or system components are extracted, is likely to
have useful application in future system maintenance for systems whose original design
documents have been lost or systems that have been modified so much that the original
design and requirements document do not reflect the current system.



5 Conclusion

NASA scientists and engineers are setting goals for future NASA exploration missions
that will greatly challenge all of us. Future missions will exhibit levels of complex-
ity that have never been seen before. They will be autonomous, pervasive, autonomic,
surviving in harsh environments and with strict constraints on their behavior.

Swarm technologies will be widely used in such missions, exploiting the fact that
more complex behaviors can emerge from the combination of several (in many cases
hundreds, or even thousands) more simple individual behaviors. Swarms augur great
potential, but pose a great problem for verification. Such systems simply cannot be ad-
equately tested, both because of their inherent complexity, and the evolutionary nature
of the systems due to learning.

The use of an appropriate formal specification notation is essential to facilitating
formal verification. We have described the FAST project, which aims at addressing this
issue.

In addition, NASA GSFC is exploring the use of Requirements-Based Programming
to enable engineers, and others, to be fully involved in the development process, to
ensure that we build the system we intended, and to appropriately exploit automatic
programming, with the prospect of reducing costs and lead-times.
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