
What can we do (technically) to get
“the right specification”?

Cliff B Jones

University of Newcastle upon Tyne
Newcastle, NE1 7RU, UK

cliff.jones@ncl.ac.uk

One can use formal approaches either post facto to try to show that a program
has desirable properties (main of which is that it satisfies a specification); or one
can go for correctness by construction. I not only prefer the latter but I have
also argued that this is the main way to get formal methods to pay off: there
is more mileage in getting a clean architecture than in trying to debug a bad
design by retrofitting a proof; I thing this is also a way to choose an appropriate
level of formality perhaps using outline arguments and filling in details if doubt
arises (see [Jon96]; Jackson and Wing made a similar point in the same journal;
also my position paper at the Royal Society meeting in October 2004 – yet to
be printed).

But how do we know that the specification is right? This is not a trivial ques-
tion especially with the way computers are today. As computers have become
more powerful and less expensive, they have become ever more deeply embedded
in the way nearly everyone works. In their short history, computers have moved
from batch processors in their own buildings to work tools on every desk (or lap);
essential components of administration, retail trade, banking and vehicles; and
are on their way to becoming invisible dust sprinkled on who-knows-what. This,
in itself, has changed the task of understanding the requirements of a system.
Above all, the close interaction of people with computer systems makes it essen-
tial that designers consider the whole system when formulating a specification
of the technical parts.

Model-oriented specification techniques like VDM, Z and B have an enormous
amount in common; among other things that this formal methods community
shares is the view that one can start with a formal specification and show that a
design/implementation satisfies that specification. It is however obvious that, if
a specification does not actually reflect the real need, proving a program correct
with respect to it is somewhat pointless.

Am I arguing in favour of “XP” or fluid prototyping? Certainly not — at
least not for most applications. But one might end up there if we decide it’s
impossible to get the right specification.

I strongly believe that, for a crucial set of computer uses, one can –and must–
start with a careful process of establishing a good specification (note comments
below on “evolution” as well). Mine is not a council of despair; I want to see how
we can use technical ideas to improve the process of getting to a specification.
In particular, some of the ideas below relate strongly to formal methods.



It might be easier to make the point by looking at accidents. Donald MacKen-
zie in [Mac94,Mac01] has traced the cause of just over 1100 deaths where com-
puter systems appear to be implicated (up to 1994). Three percent of the lives
lost appear to be attributed to bugs! Far more common causes of accidents ap-
pear to be where humans misunderstand what is going on in a control system or
the object being controlled. This is a much deeper issue than the details of HCI;
in many cases it is a fundamental question of the allocation of tasks between
person and machine. Key questions include the visibility of the state of the sys-
tem being controlled and the extent to which operations the user can perform
are clumped together.

Although accidents are shocking and thus grab attention, there is also a
significant penalty in the deployment of systems which make their users’ lives
more difficult than they need be. The enormous cost (often to the taxpayer)
of systems which are so unusable that they are not even deployed is reported
weekly in newspapers.

Of course, we should use formal specification techniques and we still need
research to make them more widely usable. (I have contributed to several sets
of tools in this area including [JJLM91].)

But it would appear to be worthwhile to see whether there is also a technical
response to the question of how one arrives at a specification which does reflect
the needs of the environment in which a system will be embedded. Does the
formal methods community have a contribution to make here? I believe so. Dines
Bjørner’s forthcoming books [Bjø05] tackle “domain modelling”.

This paper sets out some further research challenges to which we might be
able to offer useful responses.

This position paper reviews some suggestions which have arisen in the six
year “Interdisciplinary Research Collaboration on Dependability” (DIRC) —
see the WWW pages at [WWW05] for details. DIRC is focusing its research on
how to design Dependable computer-based systems. The phrase “computer-based
systems” is intended to emphasize that most computer systems today are deeply
embedded into an environment which also involves people. For example, the
requirement in a hospital is for dependability of the overall system. Sometimes,
humans will use a computer system to achieve objectives even where they know
that it delivers less than perfect information; on other occasions, computers can
be programmed to warn when errors appear to be made by humans. People are
less good than computers at narrowly specified repetitive tasks but are much
better at recognising and reacting to exceptional situations. To achieve overall
system dependability, both humans and programs must be properly deployed.

Some of the insights from the DIRC project include:

– An approach being worked on with Ian Hayes and Michael Jackson [HJJ03]
looks at determining the specification of, say, a control system by first spec-
ifying a wider system including the phenomena of the physical world which
are to be influenced. To avoid having to build a model of the behaviour of
all physical components, assumptions about their behaviour are recorded



using rely conditions. This leaves a clear record of assumptions which need
to be considered before the control system is deployed. Development from
the derived specification of the control system is conducted in the standard
(formal) way.

– The design of boundaries that limit the propagation of failures is better ar-
ticulated for technical systems than for the human part of computer-based
systems. This is odd because the intuition about limiting, say, accounting
errors by auditors is long established. Many examples can be cited to sug-
gest that most human systems are “debugged” rather than designed. The
motivation for where to place containment boundaries ought come from an
analysis of the frequency of minor faults and the the danger of their affecting
a wider system. This analysis ought precede the allocation of tasks to com-
puters which, in turn of course, must be done prior to their specifications
being “signed off”.

– A major cause of near or actual accidents is a “cognitive mismatch”1 between
an operator’s view of what is going on and the actual state of affairs in the
system the operator is trying to control. This was a significant factor in the
“Three Mile Island” reactor incident. John Rushby [Rus99] has looked at
pilot errors on the MD-88: in simulators, they frequently breach the required
altitude ceiling. Rushby’s careful formal analysis builds a state model of the
pilot’s understanding of the system and explores its interaction with a model
of the aircraft systems. (It would be informative to compare this approach
with rely conditions.)

– The general way in which processes (or procedures) are used in the human
parts of computer-based systems is interesting. If one contrasts a traditional
car production line with the depiction in the film “Apollo-13” of the search
for a solution to the need to improvise CO2 scrubbers in the damaged cap-
sule, one sees that processes both limit action and reduce the need for infor-
mation. Designing processes which cope with all exceptions is in many cases
impossible and one argument for relying on humans in computer-based sys-
tems is precisely that they notice when it is safer to violate a procedure than
to slavishly follow one that does not cover an exceptional case. Clearly, either
following an inappropriate process or deviating from a correct process can
both lead to system failure. But it is absolutely mandatory that thought is
given to processes in the design of a computer-based system. Interestingly,
one can spot errors in legislation where an algorithmic rule is frozen into law:
there have been several cases in financial legislation where a well-intentioned
trigger has had (or nearly had) counter-productive effects.

– Within DIRC, the role of advisory systems has received particular atten-
tion: [SPA03] studies an image analysis prompter used in the analysis of
mammograms. Surprising conclusions include statistically significant evi-
dence that –under the tested conditions– the most accurate operators offered

1 Both of James Reason’s books [Rea90,Rea97] look at relevant issues: the earlier
reference looks at a division of the sort of errors that humans make; the second
has insightful analyses of many system failures. Perrow in [Per99] talks of “Normal
accidents”.



less accurate conclusions with the help of the advisory system than without
its use. It is clear that the role of such advisory systems has to be considered
far more widely than just by looking at their technical specifications. In fact,
even pure safety limiters (where one would believe they can only increase
safety) have been used by operators in a way which supplants their normal
judgment.

– Systems can create other things whose dependability is the goal. In the
simplest case, a production line might manufacture silicon chips and faults in
the manufacturing process might result in faulty components for computers.
A software example is a compiler that, if faulty, could translate a perfect
program into machine code which does not respect the formal semantics of
the source language. In many cases, the creation process is human and, for
example, a designer of a bridge which fails to withstand expected forces is
at fault. The creation of computer software is just such a process and is
not always fault free! DIRC has provided an opportunity to look at Gerry
Weinberg’s conjectures in [Wei71] that different psychological types might
be more or less adept at different sub-tasks within the broad area known
as programming. The implications of this research for building dependable
systems might include steering people toward the tasks at which they are
likely to perform best (and probably be most content).

– If the above list were not daunting enough (and it is far from complete
even with respect to DIRC’s findings) there is another overriding concern.
The sort of computer-based system we have been studying will always evolve.
Designing a system which can be modified in reaction to a reasonable class of
evolutions in the environment is extremely challenging. One class of system
which has been studied within the DIRC project is generic systems. The
justification of this sort of system is that it can be instantiated for a range of
applications: characterising this range is itself a technical problem. It is clear
that issues around evolution will have a long-term impact on dependability.
There are related questions about how data survives such evolution which
are equally challenging.

DIRC has identified far more than the above set of issues; the selection here
has been based on the ease with which this one member of a project (involving
more than fifty researchers) could pull together the information.

One key experience from the first three quarters of the project is the in-
valuable role of interdisciplinarity. Looking at experiments on psychological type
and debugging performance required wholehearted collaboration of psychologists
and computer scientists; tackling the mammography advisory system involved
interaction between statisticians, sociologists and psychologists. DIRC could list
many more examples of how our combination of psychologists, statisticians, so-
ciologists and computer scientists has made real progress that no one of these
disciplines could have accomplished.

My own disposition is to seek technical approaches to problems and I hope
that the list above indicates that this is a viable challenge. But the DIRC project
has been a superb example of collaboration and if faced with a complex applica-



tion area, I would now know how to call on the expertise of other disciplines. In
particular, the painstaking gathering of observational data needs sociologists.

One message from our experience is to tackle application problems together
as a team. With an “Operations Research” (OR) like team representing several
disciplines terminology problems disappear, contributions become understood
and something is achieved which no single discipline could have envisaged.

Acknowledgments

My research acknowledgment is to the many colleagues involved in DIRC; it is
a privilege to lead such an exciting project.

We are all grateful to EPSRC for the six year funding window which we feel
was essential to foster such a wide interdisciplinary span.

References

[Bjø05] D. Bjørner. Software Engineering (3 vols.). Springer-Verlag, 2005.
[HJJ03] Ian Hayes, Michael Jackson, and Cliff Jones. Determining the specification

of a control system from that of its environment. In Keijiro Araki, Stefani
Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods, volume
2805 of Lecture Notes in Computer Science, pages 154–169. Springer Verlag,
2003.

[JJLM91] C. B. Jones, K. D. Jones, P. A. Lindsay, and R. Moore. mural: A Formal
Development Support System. Springer-Verlag, 1991. ISBN 3-540-19651-X.

[Jon96] C. B. Jones. A rigorous approach to formal methods. IEEE, Computer,
29(4):20–21, 1996.

[Mac94] Donald MacKenzie. Computer-related accidental death: an empirical ex-
ploration. Science and Public Policy, 21:233–248, 1994.

[Mac01] D. MacKenzie. Mechanizing Proof: Computing, Risk, and Trust. MIT Press,
Cambridge, Mass., 2001.

[Per99] Charles Perrow. Normal Accidents. Princeton University Press, 1999.
[Rea90] James Reason. Human Error. Cambridge University Press, 1990.
[Rea97] James Reason. Managing the Risks of Organisational Accidents. Ashgate

Publishing Limited, 1997.
[Rus99] John Rushby. Using model checking to help discover mode confusions and

other automation surprises. In Proceedings of 3rd Workshop on Human
Error, pages 1–18. HESSD’99, 1999.

[SPA03] L Strigini, A. Povyakalo, and E. Alberdi. Human machine diversity in the
use of computerised advisory systems: A case study. In DSN 2003-IEEE
International Conference on Dependable Systems and Networks, pages 249–
258, San Francisco, USA, 2003.

[Wei71] Gerald M. Weinberg. The Psychology of Computer Programming. Van
Norstrand, 1971.

[WWW05] WWW. www.dirc.org.uk, 2005.


