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1 Motivation

The technologies developed to solve the verifying compiler grand challenge
should be generic, that is, not tied to a particular language but widely ap-
plicable to many languages. Such technologies should also be semantics-based,
that is, based on a rigorous formal semantics of the languages.

For this, a computational logical framework with efficient executability and
a spectrum of meta-tools can serve as a basis on which to: (1) define the formal
semantics of any programming language; and (2) develop generic program anal-

ysis techniques and tools that can be instantiated to generate powerful analysis
tools for each language of interest.

Not all logical frameworks can serve such purposes well. We first list some
specific requirements that we think are important to properly address the grand
challenge. Then we present our experience with rewriting logic as supported by
the Maude system and its formal tool environment. Finally, we discuss some
future directions of research.

2 Logical Framework Requirements

Based on experience, current trends, and the basic requirements of the grand
challenge problem, we believe that any logical framework serving as a computa-
tional infrastructure for the various technologies for solving the grand challenge
should have at least the following features:

1. good data representation capabilities,

2. support for concurrency and nondeterminism,

3. simplicity of the formalism,
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4. efficient implementability, and efficient meta-tools,

5. support for reflection,

6. support for inductive reasoning, preferably with initial model semantics,

7. support for generation of proof objects, acting as correctness certificates.

While proponents of a framework may claim that it has all these features, in
some cases further analysis can show that it either lacks some of them, or can
only “simulate” certain features in a quite artificial way. A good example is the
simulation/elimination of concurrency in inherently deterministic formalisms by
implementing or defining thread/process scheduling algorithms. Another exam-
ple might be the claim that the lambda calculus has good data representation
capabilities because one can encode numbers as Church numerals.

3 The Rewriting Logic/Maude Experience

At UIUC, together with several students, we are developing semantic definitions
of programming languages based on rewriting logic (RWL) [27]. Rewriting logic
meets the requirements mentioned above, and supports semantic definitions
of programming languages that combine algebraic denotational semantics and
SOS semantics in a seamless way [29]. Given a language L, its rewriting logic
semantics is a rewrite theory

RL = (ΣL, EL, RL),

where ΣL is a signature expressing the syntax of L, EL is a set of equations

defining the meaning of the sequential features of L together with that of the
various state infrastructure operations, and RL is a set of rewrite rules defining
the semantics of the concurrent features of L.

3.1 Maude and its Formal Tools

Rewrite theories are triples (Σ, E, R), with (Σ, E) an equational theory and R

a set of rewrite rules. Intuitively, (Σ, E, R) specifies a computational system in
which the states are specified as elements of the algebraic data type defined by
(Σ, E), and the system’s concurrent transitions are specified by the rewrite rules
R. Rewrite theories can be executed in different languages such as CafeOBJ [22],
and ELAN [1]. The most general support for the execution of rewrite theories is
currently provided by the Maude language [6, 7], in which rewrite theories with
very general conditional rules, and whose underlying equational theories can be
membership equational theories [28], can be specified and can be executed, pro-
vided they satisfy some basic executability requirements. Furthermore, Maude
provides very efficient support for rewriting modulo any combination of associa-
tivity, commutativity, and identity axioms. Since an equational theory (Σ, E)
can be regarded as a degenerate rewrite theory of the form (Σ, E, ∅), equational
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logic is naturally a sublogic of rewriting logic. In Maude this sublogic is sup-
ported by functional modules [6], which are theories in membership equational
logic. When executed in Maude, the RWL formal semantics RL of language L

automatically becomes an efficient interpreter for L: for example, faster than
the Linux bc interpreter, and half the speed of the Scheme interpreter.

Besides supporting efficient execution, typically in the order of several million
rewrites per second, Maude also provides a range of formal tools and algorithms
to analyze rewrite theories and verify their properties. These tools can be used
almost directly to provide corresponding analysis tools for languages defined as
rewrite logic theories. A first very useful formal analysis feature is its breadth-

first search command. Given an initial state of a system (a term), we can
search for all reachable states matching a certain pattern and satisfying an
equationally-defined semantic condition P . By making P = ¬Q, where Q is
an invariant, we get in this way a semi-decision procedure for finding failures
of invariant safety properties. Note that there is no finite-state assumption
involved here: any executable rewrite theory can thus be analyzed. For systems
where the set of states reachable from an initial state are finite, Maude also
provides a linear time temporal logic (LTL) model checker. Maude’s is an
explicit-state LTL model checker, with performance comparable to that of the
SPIN model checker [24] for the benchmarks that we have analyzed [17, 18].

Reflection is a key feature of rewriting logic, and is efficiently supported in
the Maude implementation through its META-LEVEL module. One important
fruit of this is that it becomes quite easy to build new formal tools and to
add them to the Maude environment. Indeed, such tools by their very nature
manipulate and analyze rewrite theories. By reflection, a rewrite theory R
becomes a term R in the universal theory, which can be efficiently manipulated
by the descent functions in the META-LEVEL module. As a consequence, Maude
formal tools have a reflective design and are built in Maude as suitable extensions
of the META-LEVEL module. They include the following:

• the Maude Church-Rosser Checker, and Knuth-Bendix and Coherence
Completion tools [8, 15, 13, 12]

• the Full Maude module composition tool [11, 16]

• the Maude Predicate Abstraction tool [34]

• the Maude Inductive Theorem Prover (ITP) [5, 8, 9]

• the Real-Time Maude tool [33];

• the Maude Sufficient Completeness Checker (SCC) [23]

• the Maude Termination Tool (MTT) [14].

3



3.2 Unifying SOS and Equational Semantics

For the most part, equational semantics1 and SOS have lived separate lives.
Pragmatic considerations and differences in taste tend to dictate which frame-
work is adopted in each particular case. For concurrent languages SOS is clearly
superior and tends to prevail as the formalism of choice, but for deterministic
languages equational approaches are also widely used. Of course there are also
practical considerations of tool support for both execution and formal reasoning.

In the end, equational semantics and SOS, although each very valuable in
its own way, are “single hammer” approaches. Would it be possible to seam-
lessly unify them within a more flexible and general framework? Could their
respective limitations be overcome when they are thus unified? Our proposal is
that rewriting logic does indeed provide one such unifying framework. The key
to this unification is what we call rewriting logic’s abstraction knob. The point
is that in equational semantics’ model-theoretic approach entities are identi-

fied by the semantic equations, and have unique abstract denotations in the
corresponding models. In our knob metaphor this means that in equational
semantics the abstraction knob is always turned all the way up to its maximum

position. By contrast, one of the key features of SOS is providing a very de-
tailed, step-by-step formal description of a language’s evaluation mechanisms.
As a consequence, most entities —except perhaps for built-in data, stores, and
environments, which are typically treated on the side— are primarily syntactic,
and computations are described in full detail. In our metaphor this means that
in SOS the abstraction knob is always turned down to its minimum position.

How is the unification and corresponding availability of an abstraction knob
achieved? Since a rewrite theory is a triple (Σ, E, R), with (Σ, E) an equational
theory with Σ a signature of operations and sorts, and E a set of (possibly
conditional) equations, and with R a set of (possibly conditional) rewrite rules,
equational semantics is obtained as the special case in which R = ∅, so we only
have the semantic equations E and the abstraction knob is turned up to its
maximum position. SOS is obtained as the special case in which E = ∅, and
we only have (possibly conditional) rules R rewriting purely syntactic entities
(terms), so that the abstraction knob is turned down to the minimum position.

Rewriting logic’s “abstraction knob” is precisely its crucial distinction be-
tween equations E and rules R in a rewrite theory (Σ, E, R). States of the

computation are then E-equivalence classes, that is, abstract elements in the
initial algebra TΣ/E . A rewrite with a rule in R is understood as a transition
[t] −→ [t′] between such abstract states. The knob, however, can be turned up
or down. We can turn it all the way down to its minimum by converting all
equations into rules, transforming (Σ, E, R) into (Σ, ∅, R∪E). This gives us the
most concrete, SOS-like semantic description possible. Can we turn the knob

1In equational semantics, formal definitions take the form of semantic equations, typically
satisfying the Church-Rosser property. Both higher-order (denotational semantics) and first-
order (algebraic semantics) versions have been shown to be useful formalisms. We use the
more neutral term equational semantics to emphasize the fact that denotational and algebraic
semantics have many common features and can both be viewed as instances of a common
equational framework.
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“all the way up,” in the sense of converting all rules into equations? Only if
the system we are describing is deterministic (for example, the semantic def-
inition of a sequential language) is this a sound procedure. In that case, the
equational theory (Σ, R∪E) should be Church-Rosser, and we do indeed obtain
a most-abstract-possible, purely equational semantics out of the less abstract
specification (Σ, E, R), or even out of the most concrete possible specification
(Σ, ∅, R ∪E). What can we do in general to make a specification as abstract as

possible? We can identify a subset R0 ⊆ R such that: (1) R0 ∪ E is Church-
Rosser; and (2) R0 is biggest possible with this property. In actual language
specification practice this is not hard to do. Essentially, we can use semantic
equations for most of the sequential features of a programming language: only
when interactions with memory could lead to nondeterminism (particularly if
the language has threads, or they could later be added to the language in an
extension) or for intrinsically concurrent features, are rules (as opposed to equa-
tions) really needed. In our experience, it is often possible to specify most of the
semantic axioms with equations, with relatively few rules needed for truly con-
current or nondeterministic features. For example, the semantics of the JVM
described in [21, 19] has about 300 equations and 40 rules; and that of Java
described in [19] has about 600 equations but only 15 rules. A semantics for an
ML-like language with threads given in [30] has only two rules.

This distinction between equations and rules, besides giving to equational
semantics and SOS their due in a way not possible for the other alternative if
we were to remain within each of these formalisms, has also important practical
consequences for program analysis; because it affords a massive state space re-

duction which can make formal analyses such as breadth-first search and model
checking enormously more efficient. Because of state-space explosion, such anal-
yses could easily become infeasible if we were to use an SOS-like specification in
which all computation steps are described with rules. This capacity of dealing
with abstract states is a crucial reason why our generic tools, when instantiated
to a given programming language definition, tend to result in program analysis
tools of competitive performance. Of course, the price to pay in exchange for
abstraction is a coarser level of granularity in respect to what aspects of a com-
putation are observable at that abstraction level. For example, when analyzing
a sequential program using a semantics in which most sequential features have
been specified with equations, all sequential subcomputations will be abstracted
away, and the analysis will focus on memory and thread interactions. If a finer
analysis is needed, we can always obtain it by “turning down the abstraction
knob” to the right observability level by converting some equations into rules.
That is, we can regulate the knob to find for each kind of analysis the best
possible balance between abstraction and observability.

3.3 Languages Defined in Rewriting Logic

Many languages have already been given semantics in this way using Maude.
The language definitions can then be used as interpreters, and —in conjunction
with Maude’s search command and its LTL model checker— to formally analyze
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programs in those languages. For example, large fragments of Java and the JVM
have been specified in Maude this way, with the Maude rewriting logic semantics
being used as the basis of Java and JVM program analysis tools that for some
examples outperform well-known Java analysis tools [21, 19]. A similar Maude
specification of the semantics of Scheme at UIUC yields an interpreter with .75
the speed of the standard Scheme interpreter on average for the benchmarks
tested. The specification of a C-like language and the corresponding formal
analyses are discussed in detail in [31]. A semantics of an ML-like language
with threads was discussed in detail in [30], a modular rewriting logic semantics
of CML has been given in [4], and a definition of the Scheme language has been
given in [10]. Other language case studies, all specified in Maude, include: BC
[2], CCS [43, 44, 2], CIAO [40], Creol [25], ELOTOS [42], MSR [3, 38], PLAN
[39, 40], and the pi-calculus [41]. In fact, the semantics of large fragments of con-
ventional languages are by now routinely developed by UIUC graduate students
as course projects [36] in a few weeks, including, besides the languages already
mentioned: Beta, Haskell, Lisp, LLVM, Pict, Python, Ruby, and Smalltalk.

3.4 Formal Analysis

Furthermore, Maude’s formal tools, such as its inductive theorem prover, linear
temporal logic (LTL) model-checker, and breadth-first search (BFS) capability
then become meta-tools from which we derive useful program analysis tools for
L using RL.

We are furthermore developing new generic program analysis technologies

such as, for example, a generic partial-order reduction technique [20] than can
apply to any language L with threads, and does not require any changes to an
underlying model checker.

Correctness of a compiler can and should mean more than just correctness
with respect to functional behavior. Depending upon particular applications of
interest, certain important safety policies that transcend the basic semantics of
the language under consideration may need to be preserved. For example, in
an application referring to physical objects, consistency with respect to units of
measurement or coordinate systems needs to be assured. We are also developing
domain-specific certifiers, which are static analysis tools that check conformance
of computation with respect to particular but important domains of interest.
For example, we developed RWL-based certifiers for conformance with units of
measurement [37], and with coordinate frames [26].

The cost of generating tools for a language L this way using its formal se-
mantic definition RL is much lower (in the order of weeks) than that of building
similar language specific analysis tools (man years). For example, it took Feng
Chen at UIUC only three weeks to develop the formal semantics of a large
subset of Java —including multithreading, inheritance, polymorphism, object
references, and dynamic object allocation— as a RWL theory RJava specified
in Maude.

Furthermore, the formal analysis tools obtained for free from RJava and
RJV M are competitive for some applications with similar language-specific tools
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such a NASA-Ames’ Java Path Finder [45] and Stanford’s Java model checker
[35]. Similarly, our experiments with the generic partial order reduction tech-
nique indicate that it can achieve rates of space and time reduction similar to
those of language-specific tools such as SPIN [24].

4 Future Directions Related to the
Grand Challenge

Our main point has been to emphasize the need for genericity in approaching
the grand challenge; otherwise, an answer to the challenge would have a limited
applicability to other languages besides those chosen in the challenge project.
For this, we have argued that both a computational logical framework in which
to give a precise formal semantics to programming languages, and on which to
base generic program analysis tools, would be very useful.

We have also summarized our experience so far with one such logical frame-
work, namely rewriting logic, and for applying the Maude RWL language and its
generic tools to formally analyze programs in different programming languages.
Our results, although encouraging, are very much work in progress; we would
like to advance in addition the following directions:

1. Modular programming language definitions in the spirit of MSOS [32].
The goal is to build a database of reusable semantic definitions, with
the semantics of each language feature defined in a separate module. It
should then be possible to define the semantics of a whole language by just
combining the modules for the language features, renaming the syntax of
each module to the chosen concrete syntax.

2. Developing various language-generic program analysis tools; we have al-
ready mentioned the ongoing work on partial order reduction, which should
be further advanced; but generic abstraction tools, and also generic tools
for static analysis are to other important areas to advance.

3. Language-generic theorem proving environments, based on an axiomatic
semantics that uses the language rewriting semantics as its foundation are
also an important direction to investigate.

4. Finally, it would be very useful to investigate semantics-preserving trans-
lations between languages, and in particular the generation of provably
correct compilers from the formal semantics RL of a language L.
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