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Abstract. Many well-established concepts of object-oriented program-
ming work for individual objects, but do not support object structures.
The development of a verifying compiler requires enhancements of pro-
gramming theory to cope with this deficiency.
In this paper, we support this position by showing that classical specifica-
tion and verification techniques support invariants for individual objects
whose fields are primitive values, but are unsound for invariants involving
more complex object structures.
We have developed an ownership model, which allows one to structure
the object store and to restrict reference passing and the operations that
can be performed on references. We use this model to generalize classical
object invariants to cover such object structures. We summarize the state
of our work and identify open research challenges.

1 Introduction

Programming theory encompasses, among other fields, language semantics, pro-
gram logics, and specification techniques. It provides the foundation for un-
derstanding how programs work. Together with theorem proving technology,
programming theory forms the basis of program verification, in particular, of
program verifiers such as the verifying compiler [17].

Programming theory has been advanced to cope with new developments
in programming languages and programming practice: Interface specifications
in terms of pre- and postconditions, frame axioms, and invariants describe
the behavior of methods and classes [27]. Abstraction functions [16] enable
implementation-independent specifications of program behavior. Subtyping and
dynamic method binding are addressed by behavioral subtyping [26,20]. Pro-
gram logics cover a variety of programming language features [1,31]. However,
despite these achievements, programming theory still falls behind programming
practice.

This position paper describes one aspect of a larger effort to advance pro-
gramming theory in order to improve tool-assisted verification of realistic pro-
grams. Our work focuses on modular specification and verification of object-
oriented programs. Modular verification means that a class can be verified based
on its implementation and the specifications of all classes it uses, but without
knowing its subclasses and clients. Modularity is a prerequisite for the scalability



of verification techniques and tools, and for applying them to software libraries.
By contrast, non-modular verification techniques require one to re-verify a class,
say, a string class, in every context where it is (re-)used, which is not practical.

One of the major shortcomings of programming theory for object-oriented
programming is summarized by the following position:

Many well-established concepts of object-oriented programming work for

individual objects, but do not support object structures. The development

of a verifying compiler requires enhancements of programming theory to

cope with this deficiency.

In this paper, we support this position by discussing one particularly impor-
tant concept, namely object invariants. We illustrate the problems and present
ownership as a general solution to this class of problems.

For simplicity, we consider a restricted programming language here. We use
a language similar to C# and Java, but omit multi-threading, inheritance, and
static class members. However, the presented techniques do not rely on these
restrictions [18,23,22,28].

Overview. In Section 2 we describe the classical technique for reasoning about
invariants and its limitations. Section 3 presents a modular verification technique
for invariants over object structures based on an ownership model. We summarize
our progress so far and identify open research challenges in Section 4.

2 Classical Invariants and their Limitations

Invariants are predicates that specify what states of an object are consistent
[16]. For example, the invariant of the List class, near the top of Fig. 1, states
several such properties, including that the array field is always non-null and that
the array holds non-negative numbers. Thus, when calling add, for example, the
expression array.length cannot cause a null pointer exception.

The invariant semantics used by classical reasoning techniques [25,26,27] is
that each object has to satisfy its invariant in the pre- and poststate of each
exported method. To enforce this property, classical techniques require one to
prove that each exported method preserves the invariant of its receiver object.
For this proof, one may assume that in the prestate of the method execution
the precondition of the method holds and that all allocated objects satisfy their
invariants. For constructors, one has to show that the invariant of the new object
is established.

The classical techniques assume that a method can break only the invari-
ant of its receiver object. Therefore, they are sound for invariants of individual
objects whose fields are primitive values, such as points with integer coordi-
nates. However, since they do not impose proof obligations on the invariants of
other objects, these techniques do not support invariants of more complex object
structures.
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Abstraction Layering is not Sound. Classical techniques are not sound for
invariants of layers implemented on top of List. For example, the invariant of
class BagWithMax in Fig. 2, which says that no element of the list is larger than
a given upper bound, is generally not preserved by List’s add method. In par-
ticular, the call to add in BagWithMax’s insert method temporarily violates the
invariant of the BagWithMax object if k is greater than maxElem. The invariant
is restored by the last statement of insert. Even if one would require add to
preserve BagWithMax’s invariant, this example would not be handled modularly,
since modular verification of a class implies not considering its clients during its
verification.

class List {

private /*@ spec_public rep @*/ int[] array;

private /*@ spec_public @*/ int n;

/*@ public invariant array != null && 0 <= n && n <= array.length

@ && (\forall int i; 0<=i && i<n; array[i]>=0); @*/

/*@ requires k >= 0 && n < Integer.MAX_VALUE;

@ assignable array, array[n], n;

@ ensures n==\old(n+1) && array[\old(n)]==k

@ && (\forall int i; 0<=i && i<\old(n);

@ array[i]==\old(array[i])); @*/

public void add(int k) {

if (n==array.length) { resize(); }

array[n] = k; // temporary invariant violation

n++;

}

//@ assignable array, n;

public void resize() { /* ... */ }

public List() { array = new /*@ rep @*/ int[10]; }

public void addElems(int[] elems) { /* ... */ }

// other methods omitted.

}

Fig. 1. Implementation of an array-based list. Annotation comments start with
an at-sign (@), and at-signs at the beginning of lines are ignored. The array
object is part of the encapsulated internal representation of the list, indicated
by the rep annotation. The spec public annotation allows fields with any access
modifier to be mentioned in public specifications.

Invariants that depend on the state of objects of an underlying layer are
common and important. They occur in three situations. The first is when invari-
ants of the upper layer relate locations in the upper layer and the object states
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class BagWithMax {

private /*@ spec_public rep @*/ List theList;

private /*@ spec_public @*/ int maxElem;

/*@ public invariant theList != null

@ && (\forall int i; 0<=i && i<theList.n;

@ theList.array[i] <= maxElem); @*/

//@ requires k>=0;

public void insert(int k) {

theList.add(k); // temporary invariant violation if k > maxElem

if (k > maxElem) { maxElem = k; }

}

// other methods and constructors omitted.

}

Fig. 2. Class BagWithMax builds an abstraction layer on top of List.
BagWithMax’s invariant depends on the state of the List object and its array.

in the underlying layers, as illustrated by BagWithMax. The second is when an
upper layer restricts the object states of the underlying layers. For instance, a
set built on top of a list might have an invariant that excludes duplicates in the
list. The third is when the invariant of an upper layer relates the states of dif-
ferent objects of an underlying layer. This is often the case in aggregate objects.
For example, consider Family objects that aggregate different Person objects.
Family’s invariant could require that all Persons in a Family have the same
street address.

Another way to view this soundness problem is that the classical invariant se-
mantics is too strong for invariants over layered object structures. The class List
cannot modularly know enough to establish the invariant of a class, BagWithMax,
that it does not know about.

Mutable Subobjects are not Sound. For example, the invariant in class List
of Fig. 1 is not supported by classical techniques, because it refers to locations
in the underlying array object. If a reference to the array could be exposed to
other objects, then any method of the program could use such a reference to
break List’s invariant [10,25]. Such an alias could occur by rep exposure or by
capturing as illustrated by the version of addElems in Fig. 3. With that version,
the code fragment in Fig. 4 would violate List’s invariant. This could happen
even if the classical proof technique was used to prove the correctness of all of
List’s methods. This unsoundness in the classical proof technique shows that
a sound technique must either restrict invariants that depend on subobjects in
lower abstraction layers, or it must control modifications of such subobjects.
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/*@ requires elems != null

@ && (\forall int i; 0<=i && i<elems.length; elems[i]>=0); @*/

public void addElems(int[] elems) {

if (n==0) { array = elems; n = elems.length; }

else { /* ... */ }

}

Fig. 3. A questionable implementation of the List method addElems that stores
the argument array into the array field.

class Client {

/*@ requires list.n == 0; @*/

void violator(List list) {

// invariant of list holds in prestate

int[] aliasedArray = new int[10];

list.addElems(aliasedArray);

aliasedArray[0] = -1;

// invariant of list is violated in poststate

}

}

Fig. 4. Client code that shows the problem with aliased representations.

3 Ownership-Based Invariants

Ownership allows one to structure the object store and to restrict reference pass-
ing and the operations that can be performed on references. We use ownership
also to control the dependencies of invariants and to define a weaker semantics
for invariants that allows layering.

3.1 Ownership Model

Ownership organizes objects into contexts: Each object is owned by at most one
other object, called its owner. A context is the set of all objects with the same
owner. The set of objects without owner is called the root context. The contexts
of a program execution form a tree, where the context of all objects with owner
X is a child of the context containing X. The context tree is rooted in the root
context.

Our ownership model enforces the owner-as-modifier property: All modifi-
cations of an object, X, must be initiated by X’s owner. That is, X can be
referenced by any other object, but reference chains that do not pass through
X’s owner must not be used to modify X [22,28]. Therefore, owners can control
modifications of owned objects.
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The ownership relation is expressed in programs by the ownership modifier
rep, which can be used in field declarations and object creation expressions. In
class List (Fig. 1) the rep keyword indicates that the array referenced by array

and the array created in the constructor are owned by this.
Ownership and the owner-as-modifier property can be enforced by type sys-

tems or by standard verification techniques [12]. For instance, our Universe type
system [28] would forbid the assignment to array in Fig. 3 and require copying
elems to avoid the unwanted alias.

3.2 The Ownership Technique

The ownership model allows one to generalize the classical technique to invariants
over layered object structures. To avoid the soundness problems described in
Sec. 2, we use the hierarchical structure of the ownership model to refine the
classical invariant semantics.

Admissible Invariants. The ownership technique allows the invariant of an
object, X, to depend on fields of X (like the classical technique) and on fields of
objects owned by X. The invariant of class List is an ownership-based invariant
because it depends on the fields of this (array and n) and on fields of the array
owned by this (array.length and array[i]).

Ownership-based invariants can express properties of layered object struc-
tures. For instance, BagWithMax’s invariant is allowed to depend on fields of the
associated list, because the ownership model guarantees that all modifications
of the list are initiated by a method of the owning BagWithMax object, and this
BagWithMax method makes sure that the invariant is preserved. In particular,
invariant violations through representation exposure, as illustrated in Fig. 4, are
ruled out by the ownership model.

Semantics of Invariants. In Section 2, we showed that invariants over lay-
ered object structures may not hold in the pre- and poststates of all exported
methods. For example, a BagWithMax object needs to temporarily violate its in-
variant when changing its underlying theList object. To allow such violations,
we weaken the invariant semantics from the classical technique.

The weakened semantics allows a method executed on a receiver object, X, to
violate the invariants of all objects in ancestor contexts of the context containing
X. In particular, the method is allowed to violate the invariants of X’s transitive
owner objects. For instance, method add executed on a List object is allowed
to violate the invariant of the owning BagWithMax object.

Ownership Proof Technique. Like the classical proof technique, the owner-
ship proof technique requires one to prove that each exported method preserves
the invariant of its receiver object. For this proof, one may assume that in the
prestate of the method execution the precondition of the method holds and that
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those allocated objects satisfy their invariants that are in the context of the re-
ceiver object or its descendants. However, a method must not assume that the
(transitive) owners of the receiver object satisfy their invariants, which corre-
sponds to the refined invariant semantics.

To illustrate how to use the ownership proof technique, consider
BagWithMax’s insert method. For the call to List’s add method we may as-
sume that the method preserves the invariant of theList. However, since the
BagWithMax object this is the owner of the receiver of this call to add, its in-
variant might be broken by the call. To show that the insert method preserves
this invariant, we use the postcondition of add to derive that the list after the
call contains exactly the elements before the call plus the new element k. If k

happens to be a new maximum in the list, then BagWithMax’s invariant is vio-
lated after the call, but reestablished by the subsequent assignment to maxElem.
Therefore, the invariant of this is preserved.

As can be seen from the example above, responsibility for verifying invariants
is divided. A method’s implementor is responsible for the objects (transitively)
owned by the method’s receiver object, but its calling method is responsible for
other objects.

This ownership proof technique is modular and sound [22,28,30].

4 Progress so far and open Research Challenges

We have developed the ownership technique for object invariants in coopera-
tion with Gary Leavens, Rustan Leino, and Arnd Poetzsch-Heffter [22,28,30].
To handle implementations that are not supported by the ownership model such
as mutually recursive data structures, we combined ownership-based invariants
with so-called visibility-based invariants that gain modularity by imposing cer-
tain visibility requirements on fields [4,22,24,30]. We have also extended our
methodology to static class invariants [23] and adapted it to the verification of
frame properties [29]. The combination of these techniques can handle many
interesting implementations.

We have developed two approaches to specifying the ownership relation
and enforcing the owner-as-modifier property. The Universe type system [12,28]
expresses ownership by extended type information and checks the owner-as-
modifier property as part of type checking. An alternative approach [22] encodes
ownership by a specification-only field that can be used in interface specifications.
The owner-as-modifier property is enforced by a programming methodology that
restricts how objects can be modified.

Although we have made significant progress with ownership-based verifica-
tion, there are a number of open research challenges. We summarize these chal-
lenges in the following.

Ownership. An industrial case study showed that our ownership model can
handle realistic applications. However, there are common implementation pat-
terns that cannot directly be expressed, for instance, several objects sharing and
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modifying a common representation. We plan to generalize our ownership model
to allow more implementations, in particular, multiple ownership and ownership
transfer. We will also study how implementation patterns that are not directly
supported can be rewritten to follow the ownership model.

To reduce the overhead of writing ownership annotations, we are working on
ownership inference. Besides classical type inference techniques, we study run-
time inference [13] to infer ownership relations. The results so far are promising.
A major application of an inference will be to run case studies to investigate
how common ownership relations are.

Specification Features. An important topic for future work is invariants over
model (specification-only) fields [19,21], which are useful to describe properties
of data structures without referring to their concrete implementation.

History constraints [26] suffer from the same problems as the classical invari-
ant technique when applied to object structures. We plan to extend ownership-
based techniques to history constraints and to more general temporal constraints.

Specification languages like Eiffel and JML allow method calls in interface
specifications. Methods that can be called in specifications must be pure, that
is, side-effect free. Therefore, they can be formally modeled by mathematical
functions. Especially for recursive functions, ownership can help to show that the
functions are well-defined [8]. We plan to support method calls in specifications
in the Boogie tool, which is being developed at Microsoft Research.

Automation. Practical applications of program verification require a high de-
gree of automation. Research on automated verification has mainly focused on
automated verification tools [11,15] and automated theorem provers [9].

We investigate combinations of classical logic-based reasoning with extended
type systems [14,28], abstract interpretation [7], and static analyses. For in-
stance, we plan to develop static, modular analyses for purity and frame prop-
erties of methods. These analyses build on the ownership structure to simplify
the pointer and escape analysis used by related approaches [32].

5 Conclusions

In this paper, we have generalized classical object invariants to invariants over
object structures. The classical technique cannot handle even simple object struc-
tures that use layers of abstractions such as bags built on top of lists. To handle
such layers, the key idea is a refined invariant semantics, which is based on the
structure provided by an ownership model.

Ownership allows one to structure the object store systematically. Struc-
turing is important for many important applications. For instance, ownership
has also been applied successfully to the modular verification of frame proper-
ties [29], static class invariants [23], reasoning about multi-threaded programs
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[5,18], confinement of internal representations of data structures [6], and prov-
ing representation independence [2]. Therefore, we believe that ownership is a
fundamental principle of programming theory.

Parts of our work on the foundations of ownership and ownership-based ver-
ification have been implemented in JML [19], in the semi-automated Java Inter-
active Verification Environment (Jive), and in the fully automated verification
tool Boogie [3]. One important aspect of future work is to use these tools for
non-trivial case studies.
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