
Software Verification and Software Engineering

A Practitioner’s Perspective
Anthony Hall

anthony@anthonyhall.org

The web page for this conference announces

a “Grand Challenge” of crucial relevance to society: ensuring
that the software of the future will be error-free.

According to the Scope and Objectives
In the end, the conference should work towards the
achievement of the long-standing challenge of the Verifying
Compiler.

I want to question whether this long-standing challenge is really relevant to the
greater goal of achieving trustworthy software. Instead, I suggest that research in
verification needs to support a larger effort to improve the software engineering
process.
I am a strong advocate – and a practitioner – of formal methods as part of a rigorous
software engineering process. But formal methods are very much more than program
verification. The goal of verification is to take a given program and to prove that it is
correct. The goal of software engineering is quite different: it is to create a program
that is verifiably correct. Program verification is neither necessary nor sufficient for
software engineering. Its pursuit may even have harmful consequences.
To illustrate, let me take two examples from the field of security.
First, consider the appalling fact that most security flaws are caused by buffer
overflow. Why is this appalling? Because there is absolutely no need for anyone, ever,
to write a program that contains buffer overflows. That we continue to do so is a
reflection our addiction to atrocious languages like C++. There are perfectly good
languages around that make it simply impossible to write code that can cause buffer
overflows. We should use them. No research is necessary. No proofs are necessary.
It’s a decidable – indeed solved – problem.
Now let me take a more sophisticated example: cryptography on smart cards. This is a
field that seems to be natural for verification. Indeed we could hope to prove, for
example, that a cryptographic algorithm needed exponential time to break by brute
force and that it was correctly implemented on a smart card. So the smart card would
be secure, right? Wrong. Along comes Paul Kocher with a watt meter and breaks the
key that you have proved is secure. How did he do that? He did it by bypassing the
assumptions you made in your proof. But you never even stated those assumptions:
how many proofs contain the following assumption?

Ass1: No-one will measure the power used by the processor.
The harmful consequence here is obvious: by doing a proof we have given ourselves a
false sense of security. But I think there are more insidious dangers, exemplified even
by excellent work in the field. Program verification can all too easily seem to support
a process of “Ready – Fire – Aim”. For example, one – rightly acclaimed –
application of verification is Microsoft’s Static Driver Verifier. The web page for
SDV says:

SDV … is designed to be run near the end of the development
cycle on drivers that build successfully and are ready for
testing.

This is encouraging a wasteful process of guess and debug: one that is almost
guaranteed to fail for large and complex software. We have direct experience of this
with another static analysis tool, the SPARK Examiner. In principle, the Examiner
can be run retrospectively over any SPARK code. In practice, we find that all this
proves is that the code has lots of information flow errors.
A far more powerful approach is to design the code with correct information flow in
mind, and run the analyser on your design – before you have even created all the
package bodies – to eliminate design errors. This is an example of Correctness by
Construction: a step-by step process starting from early requirements and progressing
through formalisation of the specification, rigorous design, coding in a sound
language, static analysis and specification-based testing. Every step of this process is
subject to rigorous analysis and of course once one is in the formal domain that
analysis can be supported by verification tools.
I suggest that the real opportunity for the verification community is to provide better
support for Correctness by Construction. The real Grand Challenge for formal
methods is to make Correctness by Construction the mainstream approach to software
development. Proponents of this specification-oriented style of formal methods have
sometimes underplayed the importance of tools, including verification tools. There is
a real opportunity is to bring the specification and verification communities together
and to apply the extremely sophisticated tools coming from the verification
community to the systematic construction of software. Here are some of the big issues
that need to be addressed.

1. Early requirements. How can we add rigour to scenarios, use cases and other
techniques that are essential for communicating with stakeholders? How can
we formalise domain knowledge? What about the problem of “unbounded
relevance” – how do we know what assumptions to make?

2. Specification languages. How can we have rich and expressive specification
languages and at the same time have tractable proofs? How can we make
specification languages and reasoning about them more accessible?

3. Design notations. How can we express the multiple dimensions of design?
What are the refinement rules when we are using a distributed design, working
with COTS, building on a database…?

4. Concurrency. How can we express concurrency properties in a compositional
way? How can we turn a black-box sequential specification into a concurrent
implementation?

5. Testing. How can we develop efficient test cases from our requirements? How
can we relate test effectiveness and proof coverage?

6. Proof. How can we choose what to prove? How can we make proof
accessible? How can we use proof for finding errors?

This challenge is both easier and harder than pure verification. It’s easier, because a
step by step process reduces the semantic gap to be bridged and makes verification
feasible. It’s harder, because we have to face up to the difficulties of the real world,
the problem of imperfect knowledge and the difficulty of reconciling rigour and
creativity. The reward is that we really could turn software into engineering.

